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ABSTRACT

To be confident in the analyses of long-term changes in daily climate extremes, it is necessary for the data
to be homogenized because of nonclimatic influences. Here a new method of homogenizing daily tempera-
ture data is presented that is capable of adjusting not only the mean of a daily temperature series but also
the higher-order moments. This method uses a nonlinear model to estimate the relationship between a
candidate station and a highly correlated reference station. The model is built in a homogeneous subperiod
before an inhomogeneity and is then used to estimate the observations at the candidate station after the
inhomogeneity using observations from the reference series. The differences between the predicted and
observed values are binned according to which decile the predicted values fit in the candidate station’s
observed cumulative distribution function defined using homogeneous daily temperatures before the in-
homogeneity. In this way, adjustments for each decile were produced. This method is demonstrated using
February daily maximum temperatures measured in Graz, Austria, and an artificial dataset with known
inhomogeneities introduced. Results show that given a suitably reliable reference station, this method
produces reliable adjustments to the mean, variance, and skewness.

1. Introduction

The ongoing debate about the natural and anthropo-
genic causes of climate change has made it important to
investigate past climate for the longest possible time
periods. However, all climate data have to be scruti-
nized thoroughly before they can be used to assess
long-term changes in variability. Della-Marta et al.
(2004) show that, on average, each of the 99 annual
temperature records in Australia’s high-quality dataset
required 5–6 adjustments to the mean throughout the
100-yr record. These adjustments can be as large as a
change in the climate that we are trying to detect and so
without homogenizing the data, our conclusions could
be seriously flawed. Australian climate data are cer-
tainly not the only data that suffer from homogeneity

problems. There are many studies that have either as-
sessed the homogeneity (e.g., Manton et al. 2001; Serra
et al. 2001; Wijngaard et al. 2003) or have homogenized
climate series for use in long-term climate change as-
sessment (e.g., Böhm et al. 2001; Tuomenvirta 2001;
Camuffo 2002; Della-Marta et al. 2004; Auer et al. 2005;
Begert et al. 2005). Many of these studies have focused
on homogenizing monthly and annual average series,
mainly because data are mostly available at that reso-
lution and are readily accessible in digital form.

Often the climatic events that have the greatest im-
pact on society are extreme events, and within the last
10 yr, there has been a greater emphasis placed on the
research of these events (e.g., Trewin and Trevitt 1996;
Collins et al. 2000; Trewin 2001; Jones and Lister 2002;
Maugeri et al. 2002; Moberg et al. 2002; Vincent et al.
2002). Greater effort by National Meteorological Ser-
vices (NMS), collaborative European Union projects
(e.g., Camuffo and Jones 2002), and privately funded
projects (e.g., Clarkson et al. 2001) has been put into
digitizing daily data records in order to gain a greater

Corresponding author address: Dr. Paul Della-Marta, Climatol-
ogy and Meteorology Research Group, University of Bern,
Hallerstrasse 12, 3012 Bern, Switzerland.
E-mail: dmarta@giub.unibe.ch

1 SEPTEMBER 2006 D E L L A - M A R T A A N D W A N N E R 4179

© 2006 American Meteorological Society

JCLI3855



understanding of climate variability and, most impor-
tantly, the nature and changes in the extreme parts of a
climate variable’s distribution. However, with this in-
crease in the availability of daily data there has been a
concomitant need for methods able to quality control
and homogenize the higher-resolution data.

The methods used to homogenize annual and
monthly climate data have often only adjusted the cen-
tral tendency or mean state of the climate variable in
order to obtain a long-term homogeneous series, which
has been sufficient to provide reliable estimates of cli-
mate change and variability over many parts of the
world (e.g., Houghton et al. 2001; Jones and Moberg
2003).

At the daily measurement resolution, it is likely that
the typical inhomogeneities affecting a climate record
are not adequately summarized by adjusting only the
mean state, since we have evidence that these inhomo-
geneities and sometimes the processes that create them
are nonlinear. From the study of micrometeorological
processes (Oke 1987), it is evident that local climate can
vary considerably on small space scales (�10 m) and
that the processes that create these differences can only
be modeled by complex dynamical equations or some-
times, at best, empirically. For example, experiments
comparing modern instrument shelters with older ones
usually show that the earlier shelters allowed the ther-
mometers to be exposed to greater extremes of short-
and longwave radiation (e.g., Parker 1994; Nordli et al.
1997) with nonlinear effects on climate throughout the
seasonal cycle. In a statistical context, these nonlineari-
ties are expressed as a change in the parent Cumulative
Distribution Function (CDF), often with changes in
higher-order moments of the CDF. Therefore, there is
a need to make adjustments to the entire probability
distribution when homogenizing daily data.

a. Previous studies on the homogenization of daily
climate data

While the methods used to homogenize annual and
monthly data are well established (e.g., Peterson et al.
1998; Ducre-Robitaille et al. 2003), relatively few meth-
ods exist to homogenize daily data.

Brandsma and Können (2006) present a technique
called nearest neighbor resampling to homogenize daily
mean temperature for inhomogeneities caused by a
change in the time and frequency of subdaily measure-
ments. They conclude that their method produces more
reliable estimates of the changes in the 5th and 95th
percentiles of mean daily temperature.

Vincent et al. (2002) use a simple approach to ho-
mogenize Canadian daily maximum and minimum tem-
perature data based on adjustments identified using

standard techniques on monthly resolution data applied
to the daily data. Adjustments to each daily tempera-
ture are made by fitting a piecewise linear function be-
tween the monthly mean adjustments such that the in-
tegrated magnitude of the daily adjustments preserves
the monthly adjustments. They show that their method
results in improved daily error estimates and greater
spatial representation of extreme temperature trends.
A similar technique has also been used by Maugeri et
al. (2002, 2004) in the homogenization of daily tempera-
ture from Milan and daily sea level pressure data for six
stations in the Po plain in Italy, respectively. They use
a trigonometric function to interpolate daily corrections
between the monthly corrections determined from rela-
tive homogeneity tests. Jones and Lister (2002) adjust
daily mean temperatures from St. Petersburg, Russia,
using differences between the monthly average of the
raw daily values and the corrected monthly values from
previous studies. Demarée et al. (2002) and Cocheo and
Camuffo (2002) use overlapping records and linear
models to adjust for screen bias and station relocations
in order to construct a long-term central Belgium and
Padova, Italy, temperature series, respectively. Moberg
et al. (2002) apply daily corrections to the mean tem-
perature series of Stockholm, Sweden, that had been
linearly interpolated from monthly values. Their
method also corrected a series for trend-type inhomo-
geneities caused by urban warming. Unfortunately,
none of these methods adjust the higher-order mo-
ments explicitly.

The work of Allen and DeGaetano (2000), although
not specifically applied to daily temperature data, de-
scribes a technique to adjust the frequency of ex-
ceedences of an annual extreme threshold. They con-
clude that their method could be applied to daily data.

One of the most robust methods capable of adjusting
the higher-order moments of daily temperature data is
that of Trewin and Trevitt (1996; detailed below),
which builds a transfer function for the entire CDF.

In general, the literature concerning suitable tech-
niques to homogenize daily temperature data is limited.
The essence of the problem is that daily temperature
measurements vary on relatively small spatial scales
[typical decorrelation scales are �200 km (Jones and
Trewin 2002); however, these scales are likely to be
smaller in areas of complex topography] and are influ-
enced by local processes that are complex and nonlin-
ear, which can be difficult to capture using our conven-
tional climatological networks. Another problem could
be that suitable overlapping records do not exist or are
not readily accessible. In summary, we believe that the
only previous study to explicitly homogenize maximum
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and minimum daily temperature in moments higher
than the mean is that of Trewin and Trevitt (1996).

b. The Trewin and Trevitt (1996) methods

Trewin and Trevitt (1996) present three different
methods to build a composite daily temperature series.
Essential to the methods is the existence of simulta-
neous (in time) observations from the new and old ob-
serving system. These parallel measurements had been
taken based on the recommendations of Karl et al.
(1995), who suggest that a minimum of a 2-yr overlap
between the new and old observing systems be made.
In Australia, for example, this practice has only become
routine since around 1993 and so many inhomogene-
ities needed to be adjusted using the traditional con-
stant difference techniques with neighboring reference
stations. In this way, Trewin (2001) created a homog-
enized daily temperature dataset that has subsequently
been used by Collins et al. (2000) to assess trends in the
frequency of extreme temperature events in Australia.

The three methods they intercompared were con-
stant difference, linear regression, and frequency distri-
bution matching. The constant difference approach
simply adjusted the older data with the newer data us-
ing the mean of the daily differences in the simulta-
neous (parallel) measurements. The linear regression
method fitted a linear model to the difference in daily
simultaneous measurements between the two observing
systems and the temperature at the older station. This
model could then be used to adjust daily temperatures
at the older station differentially depending on the tem-
perature, thereby adjusting the higher-order moments.
Their third method determines the frequency distribu-
tion of each site during the simultaneous measurement
period. The adjustment for each desired percentile is
calculated simply as the difference between the two
percentiles. This method assumes that there is no sys-
tematic bias in the rank order of the temperatures at
the two sites. They show that both the regression
method and the frequency distribution matching tech-
nique have certain advantages; however, if the homog-
enization of extreme events is most needed, then their
frequency distribution matching technique is more ac-
curate.

2. Data

The daily data used in this study consist of maximum
temperature data from Graz University (Graz-Uni),
Austria, and surrounding stations and artificial data.
The annual daily data have been split into monthly se-
ries to avoid the treatment of the annual cycle. The

artificial data have been used to show the practicality of
the method when the true solution to the inhomogene-
ity problem is known a priori.

To create the artificial daily candidate data, T, we
started with Gaussian noise, Zt, with a mean of zero and
a variance (�2) of 1°C [Zt � N(0, 1)]. We then made it
autocorrelated up to a lag of 6 days, which is typical of
daily temperature data according to Eq. (1):

Tt � �1Tt�1 � �2Tt�2 � . . . � �6Tt�6 � Zt, �1�

where the autocorrelation coefficients �i�1,6 � (0.8, 0.7,
0.4, 0.3, 0.2, 0.1). We added a monthly mean and a
variance inflation term to make winter more variable
than summer months. As we will see later in section 4,
the assumption that monthly daily temperatures are
normally distributed is valid for our real example sta-
tion detailed below. This we used as justification for
creating the artificial data based on Gaussian noise;
however, we note that often the assumption of nor-
mally distributed daily values is not correct. We also
added a 1°C per 100 yr positive trend to it—this being
typical of the magnitude for many stations around the
world over the last century (Jones and Moberg 2003).
To create the 10 reference series, we added Gaussian
noise to the artificial candidate data with a standard
deviation equal to half the monthly standard deviation
of the candidate daily data. This resulted in daily series
that were correlated between 0.8 and 0.9. We then
added five randomly distributed inhomogeneities
(within consecutive 30-yr periods) in the artificial can-
didate and reference series. All of the inhomogeneities
in the mean were randomly created from a N(0, 1)
distribution except for homogeneous subperiod (HSP)
4, where the change in skewness induced a change in
the mean. Two of the inhomogeneities also included a
change in the variance. This created six HSPs in which
the data could be considered homogeneous (between
the inhomogeneities). Table 1 summarizes the HSPs of
the artificial candidate data and the inhomogeneities
introduced.

The data used in section 3e relied on the creation of
500 reference series. These series were created similarly
to the other artificial reference stations (detailed
above); however, no break points in these series were
introduced.

To test the method on real daily temperature data,
we used maximum temperatures from Graz-Uni for the
month of February. We also used seven other daily
maximum temperature reference station records. The
basic metadata of the seven stations and details of the
homogeneous subperiods for the candidate and two ref-
erence stations believed to be the most suitable are
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compiled by Auer et al. (2001) and Böhm et al. (2001)
(Tables 4, 5).

3. The higher-order moments method of
homogenizing daily temperature

Where simultaneous observations between old and
new observing systems do not exist or are not available,
the most likely source of information regarding possible
adjustments is neighboring stations. This concept has
been utilized extensively in almost every other study on
the homogenization of climate data and is also the basis
of the new method we present here.

Although not treated in their paper, Trewin and Tre-
vitt (1996) suggest that in order to build a daily com-
posite temperature series that adequately adjusts the
higher-order moments, another series from a nearby
location (which is homogeneous) could be used when
there are no overlapping measurements for the candi-
date station. We try to summarize the method as a
sequence of operations defined in the following list:

1) Define HSPs for the candidate and as many refer-
ence stations as possible.

2) Starting with the most recent inhomogeneity, find a
reference station that is highly correlated and has
an HSP that adequately overlaps both HSP 1 and
HSP 2 of the candidate station.

3) Model the relationship between the paired candi-
date and the reference observations before the in-
homogeneity (i.e., in the period of common over-
lap within HSP 1 of the candidate).

4) Predict the temperature at the candidate station
after the inhomogeneity using observations from
the reference series in the period of common over-
lap within HSP 2 and the model.

5) Create a paired difference series between the pre-

dicted and observed temperature after the inhomo-
geneity (i.e., within HSP 2).

6) Find the probability distribution of the candidate
station in HSP 1 and HSP 2.

7) Bin each temperature difference in the difference
series (step 5) according to its associated predicted
temperature in a decile of the probability distribu-
tion of the candidate station in HSP 1.

8) Fit a smoothly varying function between the
binned decile differences (step 7) to obtain an es-
timated adjustment for each percentile.

9) Using the probability distribution of the candidate
in HSP 2 (step 5), determine the percentile of each
observation in HSP 2 and adjust it by the amount
calculated in step 8.

10) HSP 2 is now homogeneous with respect to HSP 1.
Repeat the process for all other HSPs sequentially.

The method described is more complex than those
presented in Trewin and Trevitt (1996); however, it is
similar conceptually. Both methods model the relation-
ship between two series and both methods use esti-
mates of the probability distribution of the candidate
station. However, the higher-order moments (HOM)
method is made more complex by the need to build a
transfer function not just from one observing system to
another (as is possible when parallel measurements are
available), but a transfer function from one observing
system (the candidate station before the inhomogene-
ity) to another observing system (a homogeneous ref-
erence station) to another observing system (the can-
didate station after the inhomogeneity).

We will now move on to a completed example of the
method, and for this purpose we will use the artificial
candidate data described in section 2 and hereafter re-
fer to these as the candidate. Throughout the example
and the remainder of the text, we will refer to the steps
in the method defined above to help the reader. Using
simulated data, we have defined the HSPs necessary in
step 1 of the method.

a. Fitting the nonlinear model

By using a nonlinear model (step 3), it was believed
possible to define some of the nonlinearities known to
exist (Trewin and Trevitt 1996) in the relationship be-
tween two daily temperature records. Working back-
ward from the latest inhomogeneity identified in the
candidate (1978; see Table 1), we first find a highly
correlated reference station (reference) with an HSP
that spans at least 3 yr before (approximately 90 daily
observations) and 3 yr after the candidate inhomoge-
neity (step 2). In our case, we used a reference that had
a HSP from 1958–98. We fitted a nonlinear local re-

TABLE 1. A summary of the inhomogeneities in the artificial
candidate series where Tt is the daily temperature at time t, 	 is
the mean of the artificial series, and �t is the trend term.

HSP Time Mean (°C)
Higher-order

moment factor

1 1979–2003 � �
2 1960–78 �0.22

� �1.5Tt�Tt � � � �t�

1.5Tt�Tt � � � �t�
3 1915–59 �1.30 �

4 1889–1914 �0.52
� �1.5Tt�Tt � � � �t�

1.0Tt�Tt � � � �t�

5 1863–88 �0.77
� �0.5Tt�Tt � � � �t�

0.5Tt�Tt � � � �t�
6 1850–62 �0.84 �
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gression (LOESS; Cleveland and Devlin 1988) model
to estimate the relationship between the candidate (re-
sponse, yi) and the reference (predictor, xi) before the
inhomogeneity (step 3). The smoothing model is given
by Eq. (2),

yi � g�xi� � �i, �2�

where g is the regression surface, i is the ith observation
from 1 to Nmodel (the total number of observations),
and the 
i are random errors. There are a number of
parameters that control the regression surface g. They
are the smoothing parameter, � (� � 0), the degree of
the local fitted polynomial � (0, 1 or 2), and the distri-
bution of the random errors, 
i, either Gaussian or uni-
formly distributed. We chose the Gaussian distribution
for the random errors since this has the effect of reduc-
ing the weight given to scatter points farther away from
the fitted curve. The smoothing parameter and the de-
gree of the polynomial fitted to the model was set so
that the fitted function is smoothly varying and robust
to outliers, especially at the extremes of temperature.
The criteria for altering the parameters were set ac-
cording to the correlation coefficient between the can-
didate and the reference, r, and the total number of
observations (Ntotal � Nmodel � Npred, where Npred is
the number of observations used to predict tempera-
tures at the candidate after the inhomogeneity in HSP
2) used to build and apply the model specified below in
Eq. (3):

� � �
3.0, �r � 0.8 Ntotal � 1000�

1.5, �r � 0.8 Ntotal � 1000�

3.0, �r � 0.8 Ntotal � 1000�

1.5, �r � 0.8 Ntotal � 1000�

� � �
1, �r � 0.8 Ntotal � 1000�

1, �r � 0.8 Ntotal � 1000�

2, �r � 0.8 Ntotal � 1000�

2, �r � 0.8 Ntotal � 1000� .

�3�

A higher � results in a larger amount of smoothing,
and the order of the polynomial, �, controls the com-
plexity of the fit. This precaution helped to prevent
overfitting; however, initially the criteria were set in an
arbitrary way from trial and error. Experimental evi-
dence that the parameter settings are preventing over-
fitting is detailed in section 3e. In this case, a total of
620 daily values (Nmodel) were used to build the model.
Figure 1 is a scatterplot of the candidate versus the
reference and the LOESS-fitted function for HSP 1
(solid black line) and HSP 2 (dashed black line). Note
that the model fitted to HSP 1 in Fig. 1 is the model we
use in step 3 of the method and that the model fitted to

HSP 2 in Fig. 1 is displayed only for comparison pur-
poses. The first thing to notice about the two fitted
functions is that they are almost linear but with differ-
ent slopes, and these slopes are both different from a
slope of 1 (thin black line). The difference in the slope
of the two fitted curves implies that a change in vari-
ance has occurred because of the inhomogeneity. We
can also learn more about the variability of each station
by comparing the slopes of the fitted curves to the line
of slope equal to 1. In HSP 1, the solid black curve
indicates that daily temperatures at the candidate are
less variable than those at the reference, since its slope
is less than 1. In HSP 2, the dashed black curve indi-
cates that the variability at the candidate is more vari-
able than at the reference, since the slope of the fitted
curve is greater than 1.

b. Calculating the adjustments at each decile

The model (solid black line in Fig. 1; step 3) was then
used to estimate the observations at the candidate after
the inhomogeneity given homogeneous observations
from the reference (using a total of 589 daily values,
Npred; step 4). The differences between the candidate
observed (inhomogeneous) values and the model-fitted
values (step 5) after the inhomogeneity were binned
(step 7) according to which decile the model-fitted val-
ues were placed in in the candidate observed CDF

FIG. 1. The relationship between the artificial candidate station
and the artificial reference series in HSP 1 (circles) and HSP 2
(crosses) where the solid and dashed curves denote the nonlinear
LOESS fit, respectively. The thin black line has a slope of 1 for
comparison purposes.
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(solid black line in Fig. 2; step 6), defined using the
homogeneous temperatures before the inhomogeneity.
By comparing the two CDFs in Fig. 2, it is apparent that
the variance of the data in HSP 2 (dashed black line) is
higher than in HSP 1 (solid black line). We fitted a
LOESS function to the binned decile adjustments to
obtain a smoothly varying set of adjustments between
each decile, which are shown in Fig. 3 (step 8). Notice
that the adjustment curve has an overall negative slope,
which indicates that candidate data in HSP 2 should be
made less variable to be homogeneous with HSP 1. The
mean of the adjustments calculated over all deciles is
�0.5°C and the known shift in the mean applied to the
series was �0.2°C, showing that the adjustment curve is
capturing both the change in variance and in this case,
less accurately, the change in mean.

c. Applying the adjustments

Because the parent distributions of the candidate be-
fore and after the inhomogeneity are likely to be dif-
ferent (as indicated by the sample distribution shown in
Fig. 2), it was necessary to apply the fitted adjustments
(at each percentile) to the daily data according to the
CDF of the candidate after the inhomogeneity (HSP 2;
dashed black line in Fig. 2; step 9). This ensured that a

daily value, say at the 95th percentile at the candidate
after the inhomogeneity, was adjusted as if it were an
observation at the 95th percentile in the candidate sta-
tion in HSP 1, before the inhomogeneity.

In both cases, the CDF before and after the inhomo-
geneity was fitted using the theory of L-Moments
(Hosking 1990) and the best fitting of six different dis-
tributions was estimated using a Kolmogorov–Smirnov
test (Press et al. 1996). It is claimed by Hosking (1990)
that L-Moments can provide more reliable estimates of
the underlying distribution for small samples and are
influenced less by outliers compared to conventional
moments. The six distributions tested were the Normal
(NOR), Generalized Extreme Value (GEV), General-
ized Normal (GNO), Pearson type three (PE3), Gen-
eralized Pareto (GPA), and the Wakeby (WAK). For
more information on the formulation of each distribu-
tion and the fitting method using L-Moments, readers
are encouraged to refer to Hosking (1990). Generally,
the NOR, GEV, GNO, PE3, and WAK distributions
fitted the artificial data equally well before and after
each inhomogeneity, which is not that surprising given
that they are based on normally distributed data. How-
ever, the NOR distribution had a noticeably (not
shown) poorer fit to the data in HSP 4, since it cannot
model moments higher than the second.

Given the smooth nature of the sample CDFs (Figs.
2 and 4), it would have been possible to estimate the
percentiles without fitting a model distribution to them.
The HOM could be made simpler by using an empirical

FIG. 2. The fitted (solid and dashed black line) and sampled
(open gray circles and gray crosses) CDF of the artificial candi-
date station in HSP 1 and HSP 2 using the GEV distribution,
respectively (see section 3 for details on the abbreviations of the
fitted distributions).

FIG. 3. The smoothed adjustments (°C) for each decile shown as
a solid black curve fitted using a LOESS function. The box plots
indicate the mean of the binned differences (black line), the in-
terquartile range (shaded area), 1.5 times the interquartile range
(dashed black line), and outliers (dots). The width of the box
indicates the relative number of observations in each. The dashed
black curved lines show the 95% CI of the fitted curve.
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method to estimate the percentiles of the sample CDFs;
however, a consequence of fitting a distribution using
L-Moments is that it provides a useful estimate of the
magnitude of the higher-order moments (not shown)
that are not overly biased by outliers.

d. The other inhomogeneities

Now that we have applied the adjustments at each
percentile, we have made HSP 2 homogeneous with
respect to HSP 1. For simplicity in notation, we will
now group what was HSP 1 and HSP 2 and call this
HSP 1. The procedure of finding a suitable reference
was repeated in order to adjust HSP 3 to be homoge-
neous with HSP 1 and so on, until the entire series was
homogenized (step 10). The models, CDFs, and adjust-

ments for the other HSPs are shown in Figs. 4, 5, and 6,
respectively. Concentrating on the models for the mo-
ment, we can see a wide variety of differences between
the fitted curves. Figure 4a shows that the fitted curves
are almost parallel with the dashed black line above the
solid black line, indicating that temperatures in HSP 3
are on average higher than in HSP 1 (remember that
HSP 1 is really the original HSP 1 and HSP 2 joined
together after homogenization of HSP 2). This is also
apparent in Fig. 5a; the dashed black line CDF is on
average warmer than the solid black CDF. The adjust-
ments show (Fig. 6a) that the method is capturing the
known shift in the mean of �1.3°C, with a mean nega-
tive adjustment of 1.0°C, although notice that the fitted
curve to the adjustments has a slightly negative trend
from decile 1 to decile 10. This is the result of a less-

FIG. 4. The relationship between the artificial candidate station and an artificial reference series before (open
gray circles) and after (gray crosses) with a LOESS-fitted curve before (solid black line) and after (dashed black
line) each inhomogeneity in HSP 1 and (a) HSP 3, (b) HSP 4, (c) HSP 5, and (d) HSP 6. The thin black line in each
plot has a slope of 1 for comparison purposes.
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than-perfect model fit and sampling errors, since we
know that the adjustments over all deciles should form
a horizontal line. Similarly, the adjustments to HSP 6
(Fig. 6d) show mean adjustments of �1.0°C (actual in-
homogeneity of �0.8°C). The fitted curve to the adjust-
ments shows a small decreasing trend from decile 1 to
decile 10. Again this seems to be the result of sampling
errors and/or a poor model fit. If we look at Fig. 4d, we
see that the reason for the small trend in the adjust-
ments is an overfitting (solid black line) of the data in
the lower decile.

In HSP 4, we applied a negative skewness that re-
sulted in a true mean shift of �0.5°C. The fitted model
and the adjustments show that this inhomogeneity was

captured well by our method. The dashed black line in
Figs. 4b and 5b confirms that candidate has a negatively
skewed relationship with reference in HSP 4 and is
negatively skewed in comparison with candidate in
HSP 1, respectively. The adjustments (Fig. 6b) show
that candidate values less than the fifth decile in HSP 4
are adjusted increasingly positively toward the lower
deciles. The mean adjustment is �0.5°C in agreement
with the mean shift of �0.5°C.

The decreased variance applied to the candidate in
HSP 5 was also well resolved by the method with an
overall positive trend in adjustments from decile 1 to
decile 10 (Fig. 6c) and with a mean adjustment of
�0.6°C when the shift in the mean applied was �0.8°C.

FIG. 5. The fitted and sampled CDF before (solid black line, open gray circles) and after (dashed black line, gray
crosses) each inhomogeneity of the artificial candidate station: (a) HSP 1 and HSP 3 using the GEV distribution,
(b) HSP 1 using the NOR and HSP 4 using the PE3 distribution, (c) HSP 1 and HSP 5 using the GEV distribution,
and (d) HSP 1 using the PE3 and HSP 6 using the GEV distribution.
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A comparison of the artificial monthly averaged daily
data before and after homogenization is shown in Fig.
7. It is clear that the method is able to homogenize the
data well compared to the truth (thin gray line); how-
ever, systematically the homogenized values tend to be
higher than the true values in HSPs 2, 3, 5, and 6. This
could be due to cumulative errors being propagated
through the adjustments. This problem is common to
most homogenization methods and is difficult to avoid;
however, other examples of homogenized artificial data
(not shown) compared with the true series show that
the method is not systematically biased.

e. Experiments to assess the accuracy of the HOM
method adjustments

In this section, we explore the sensitivity of the mean
adjustment (calculated over all percentiles) and the
overall root-mean-square error (RMSE) between the
truth and the adjusted daily artificial series for various
parameters of the nonlinear model fitted in steps 3 and
8. We will also show the results of altering other pa-
rameters such as the correlation between the candidate
and the reference and the number of observations
used to build (step 3) and apply (step 4) the model. All

experiments used the same artificial candidate series
shown in Fig. 7 for an easy comparison of results.
To build confidence intervals (CIs), we used 500 dif-
ferent reference series (see section 2 for the details).
The parameters of each experiment are detailed in
Table 2 and a summary of the results for each ex-
periment (11 experiments in total, denoted as E1–E11)
is shown in Table 3. The first eight experiments were
designed to show the differences in the skill of the
HOM method for each of the parameters specified in
Eq. (3).

One of the most consistent results is the difference in
	RMSE (see Table 3) between the experiments using a
combined number of observations (Nmodel � Npred)
equal to 1000 and those equal to 200. Clearly the 	RMSE

are higher for those experiments using a lower number
of observations. The number of observations also
clearly makes a difference as to whether the HOM
method is capable of reproducing the known shifts to
the mean, 	true. Looking at the results of E2 and E4,
only the largest shift in the mean in HSP 3 is reliably
adjusted when the number of combined observations is
200.

The effect of decreasing the correlation by increasing
the noise added to the reference series, combined with

FIG. 6. Same as in Fig. 3, but for (a) HSP 3, (b) HSP 4, (c) HSP 5, and (d) HSP 6.
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a lower number of observations, results in unreliable
adjustments for the HOMs and the mean. This is shown
in the results of E6 and E8 where the correlation is
around 0.7. Here, 	RMSE (up to 2.4°C) are largest for
the adjustments to HSP 3 (variance increased) and HSP
4, where a large negative skewness inhomogeneity was
introduced. However, so long as a sufficiently large
number of observations are used, the HOM method
can reproduce the true series as shown in E5 and E7,
where in every HSP (except HSP 2) the mean ad-
justment is confidently the same as the true adjust-
ment (bold font in Table 3). The drawback of using
lower-correlated stations is that the 	RMSE values
are sometimes doubled and generally increase from
around 0.3°C in E1 and E3 to around 0.45°C in E5
and E7.

More subtle are the differences between the settings
of � and � used in steps 3 and 8 of the HOM method.
There are noticeably better 	HOMfitted results for E7

compared with E5 as the result of using a smoother
LOESS fit (parameters shown in Table 2), shown by the
lower 95% CIs in the former. Comparing the results of
E1 and E3, we cannot see any systematic differences in
the 	HOMfitted or the 	RMSE between the two experi-
ments, indicating that the model is less sensitive to the
overfitting when the correlation between the candidate
and the reference station is high.

To test the hypothesis that a nonlinear model is bet-
ter than a linear model used in steps 3 and 8, we de-
signed E9 to be compared with E1 and E3. Instead of
using the LOESS model [Eq. (2)], we used a simple
least squares linear model. Overall, the linear model
has given similar results to those in E1 and E3. The
	true value is captured in all the 	HOMfitted CIs. Also,
the linear model produces similar 	RMSE in all HSPs
except HSP 4, where it is significantly greater by 0.2°C
compared with the same HSP in E1 and E3. This indi-
cates that a linear model could be used in steps 3 and 8
of the HOM method if there were no inhomogeneities
in the third moment or skewness.

E10 was designed to test whether using lower values
of � � 0.66 than previously used in step 3 resulted in an
overfitting of the model. Based on the results shown for
E10, there is no evidence that overfitting is occurring.
We have shown that in some circumstances overfitting
is occurring (see black curve in Fig. 4d); however, it
does not seem to overly affect the adjusted series sta-
tistics.

Finally, we wanted to test whether the parameters
that control the fit to the binned decile differences (step
8) had a noticeable effect on the adjusted series statis-
tics. In E11, we made the fit to the binned differences
smoother; however, when comparing E11 to E1 and E3,
there are no discernable differences.

A synthesis of these results suggests that the param-
eters chosen by trial and error in Eq. (3) to alter the
sensitivity of the nonlinear model are a good approxi-
mation for the successful practical use of the method.

FIG. 7. A comparison of the monthly averaged daily artificial candidate station’s true (thin
gray line) and inhomogeneous (dashed gray line) time series, and the homogenized time series
using the new method (solid black line). Black vertical lines denote the boundaries between
the HSPs defined in Table 1.

TABLE 2. Criteria of the various experiments performed to as-
sess the accuracy of the adjustments to the synthetic candidate
series detailed in section 2 and Table 1. Column 2 shows the
proportion of the artificial candidate stations’ standard deviation
of white Gaussian noise added to the candidate station in order to
create the reference series. Columns 3–6 show the parameters
detailed in section 3.

Experiment
number

Noise factor
(reference) Nmodel Npred

�, �
(step 3)

�, �
(step 8)

1 0.5 500 500 1.5, 2 0.66, 2
2 0.5 100 100 1.5, 2 0.66, 2
3 0.5 500 500 3.0, 1 0.66, 2
4 0.5 100 100 3.0, 1 0.66, 2
5 1.0 500 500 1.5, 2 0.66, 2
6 1.0 100 100 1.5, 2 0.66, 2
7 1.0 500 500 3.0, 1 0.66, 2
8 1.0 100 100 3.0, 1 0.66, 2
9 0.5 500 500 Linear Linear

10 0.5 500 500 0.66, 2 0.66, 2
11 0.5 500 500 1.5, 2 1.5, 2
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4. Applying the method to Graz-Uni maximum
temperatures

In this section, we show the practical application of
the method to February daily maximum temperatures
from Graz-Uni. Table 4 shows the HSPs identified by
Böhm et al. (2001) and Auer et al. (2001) for the can-
didate and the reference series.

To homogenize HSP 1 with HSP 2, we used the HSP
1 of maximum temperatures from Vienna, Austria. The
model (Fig. 8a) shows that before and after the inho-
mogeneity, there has been a general shift in the mean.
There is also a subtle change in the relationship after
the inhomogeneity in the upper tail of the distribution
where it seems that the candidate is less extreme than it
should be. This is also apparent by comparing the CDF
of the candidate in HSP 1 and HSP 2 (Fig. 9a), where it
is apparent that the area between the two CDFs is in-
creasing above 5°C. Although the best fitting distribu-
tions were the WAK and GEV distributions for HSP 1
and HSP 2, respectively, other distributions including
the NOR distribution gave an almost equally good fit.
This was used as justification in section 2 to create ar-
tificial time series based on normally distributed data;
however, we acknowledge that this is not always the
case. The adjustments (Fig. 10a) indicate that a large

TABLE 3. Summary of the results of each experiment detailed in
Table 2 using 500 different reference series for each candidate
HSP. Column 2, 	true, shows the mean adjustment applied to the
HSP from Table 1. Column 3, r, shows the mean correlation be-
tween the candidate and the reference series in the period used to
build the model (step 3) with corresponding 95% CI. Column 4,
	HOMfitted, shows the mean of the mean adjustment calculated
over all percentiles with corresponding 95% CI (note that the
adjustments in this column should be opposite in sign to the im-
posed shift in the mean shown in column 2). Column 5, 	RMSE,
shows the mean of the square root of the sum of daily errors
between the truth and the HOM method adjusted series with a
corresponding 95% CI. The 	HOMfitted statistics that are statisti-
cally different from zero and capture the 	true value are bold.

	true

(°C) r
	HOMfitted

(°C)
	RMSE

(°C)

Experiment 1
HSP 2 �0.22 0.92  0.01 0.28  0.21 0.32  0.10
HSP 3 1.30 0.92  0.01 �1.29  0.19 0.23  0.14
HSP 4 �0.52 0.91  0.01 0.61  0.27 0.31  0.10
HSP 5 0.77 0.92  0.01 �0.70  0.21 0.36  0.09
HSP 6 �0.84 0.92  0.01 0.78  0.26 0.27  0.17

Experiment 2
HSP 2 �0.22 0.92  0.02 0.20  0.44 0.60  0.33
HSP 3 1.30 0.92  0.02 �1.56  0.54 0.69  0.41
HSP 4 �0.52 0.92  0.02 0.66  0.75 0.79  0.61
HSP 5 0.77 0.89  0.06 �0.69  0.70 0.66  0.37
HSP 6 �0.84 0.91  0.03 0.76  0.85 0.52  0.45

Experiment 3
HSP 2 �0.22 0.92  0.01 0.28  0.19 0.32  0.10
HSP 3 1.30 0.92  0.01 �1.28  0.20 0.22  0.14
HSP 4 �0.52 0.91  0.01 0.62  0.26 0.30  0.09
HSP 5 0.77 0.92  0.01 �0.68  0.20 0.35  0.07
HSP 6 �0.84 0.92  0.01 0.79  0.24 0.25  0.16

Experiment 4
HSP 2 �0.22 0.92  0.02 0.19  0.47 0.57  0.28
HSP 3 1.30 0.92  0.02 �1.58  0.54 0.69  0.45
HSP 4 �0.52 0.92  0.02 0.61  0.75 0.71  0.59
HSP 5 0.77 0.90  0.06 �0.72  0.69 0.64  0.34
HSP 6 �0.84 0.91  0.03 0.74  0.80 0.57  0.45

Experiment 5
HSP 2 �0.22 0.76  0.03 0.14  0.31 0.44  0.21
HSP 3 1.30 0.76  0.03 �1.48  0.29 0.39  0.24
HSP 4 �0.52 0.73  0.03 0.51  0.39 0.48  0.23
HSP 5 0.77 0.77  0.03 �0.82  0.33 0.50  0.22
HSP 6 �0.84 0.77  0.03 0.78  0.47 0.51  0.35

Experiment 6
HSP 2 �0.22 0.77  0.07 �0.04  0.76 1.02  0.86
HSP 3 1.30 0.77  0.06 �2.19  0.90 1.39  0.96
HSP 4 �0.52 0.75  0.07 0.52  1.16 1.08  0.81
HSP 5 0.77 0.72  0.08 �0.62  1.08 0.86  0.51
HSP 6 �0.84 0.74  0.08 1.04  1.31 0.95  0.80

Experiment 7
HSP 2 �0.22 0.76  0.03 0.16  0.26 0.46  0.15
HSP 3 1.30 0.76  0.03 �1.46  0.23 0.37  0.22
HSP 4 �0.52 0.73  0.04 0.53  0.34 0.57  0.13
HSP 5 0.77 0.76  0.03 �0.78  0.29 0.49  0.16
HSP 6 �0.84 0.77  0.03 0.82  0.35 0.47  0.30

TABLE 3. (Continued)

	true

(°C) r
	HOMfitted

(°C)
	RMSE

(°C)

Experiment 8
HSP 2 �0.22 0.77  0.07 �0.06  0.77 1.00  0.73
HSP 3 1.30 0.78  0.07 �2.21  0.89 1.41  0.88
HSP 4 �0.52 0.75  0.07 0.49  1.14 0.98  0.71
HSP 5 0.77 0.72  0.09 �0.65  1.09 0.82  0.53
HSP 6 �0.84 0.74  0.08 0.99  1.26 0.94  0.77

Experiment 9
HSP 2 �0.22 0.92  0.01 0.23  0.20 0.39  0.07
HSP 3 1.30 0.92  0.01 �1.32  0.19 0.23  0.15
HSP 4 �0.52 0.91  0.01 0.63  0.25 0.52  0.06
HSP 5 0.77 0.92  0.01 �0.66  0.20 0.39  0.05
HSP 6 �0.84 0.92  0.01 0.81  0.25 0.24  0.19

Experiment 10
HSP 2 �0.22 0.92  0.01 0.27  0.19 0.32  0.10
HSP 3 1.30 0.92  0.01 �1.30  0.19 0.23  0.15
HSP 4 �0.52 0.91  0.01 0.61  0.25 0.33  0.10
HSP 5 0.77 0.92  0.01 �0.70  0.20 0.35  0.09
HSP 6 �0.84 0.92  0.01 0.78  0.24 0.28  0.18

Experiment 11
HSP 2 �0.22 0.92  0.01 0.24  0.18 0.36  0.08
HSP 3 1.30 0.92  0.01 �1.32  0.17 0.22  0.14
HSP 4 �0.52 0.91  0.01 0.57  0.27 0.31  0.09
HSP 5 0.77 0.92  0.01 �0.71  0.21 0.39  0.08
HSP 6 �0.84 0.92  0.01 0.76  0.26 0.24  0.18
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shift in the mean of approximately 1.5°C is needed for
deciles 1–4, but also a change in skewness is required by
making the deciles 5–10 increase more extreme by up to
2.4°C. In general, these adjustments are similar in mag-

nitude to those suggested by Auer et al. (2001) and
Böhm et al. (2001) shown in Table 4.

Using reference data from Kremsmünster’s HSP 3,
the model and adjustments (Figs. 8b and 10b) indicate

TABLE 4. A summary of the inhomogeneities in February maximum temperature series of Graz-Uni, Vienna, and Kremsmünster
from Auer et al. (2001). The adjustments indicate the magnitude of the shift expressed as a cumulative adjustment.

Candidate Reference stations

Graz-Uni Vienna Kremsmünster

HSP Time Mean °C HSP Time Mean °C HSP Time Mean °C

1 1988–2003 – 1 1953–2003 – 1 1986–2003 –
2 1955–87 �2.2 2 1902–52 �0.5 2 1965–85 �0.3
3 1943–54 �0.0 3 1900–01 �0.0 3 1946–64 �0.0
4 1891–1942 �2.0 4 1873–99 �0.4 4 1940–45 �0.1
5 –1890 �1.4 5 1853–72 –0.3 5 1909–39 –0.1

6 –1852 �0.1 6 1891–1908 –1.0
7 1887–90 –0.5
8 1879–86 –0.3
9 –1878 –0.2

FIG. 8. The relationship between Graz-Uni and a ref-
erence station before (open gray circles) and after (gray
crosses) with a LOESS-fitted curve before (solid black
line) and after (dashed black line) each inhomogeneity
in (a) HSP 1 and HSP 2 using Vienna, (b) HSP 1 and
HSP 3 using Kremsmünster, and (c) HSP 1 and HSP 4
using Vienna. The thin black line in each plot has a
slope of 1 for comparison purposes.
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that an increase in positive skewness and a large in-
crease in the mean of approximately �1.5°C are nec-
essary to homogenize it. This is substantially different
from the negative adjustment (�2.2°C) suggested by
Böhm et al. (2001) and Auer et al. (2001) that results in
a cumulative adjustment of �0.0°C (Table 4). Since this
finding is contradictory, it was necessary to investigate
the possible causes more thoroughly. Detailed meta-
data for Graz-Uni were obtained from Auer et al.
(2001) and indicate that generally, the Graz-Uni site
has only experienced a few site relocations with no ma-
jor relocations during the HSP 2 (1955–87) and HSP 3
(1943–54) under investigation. The cause of the inho-
mogeneity was most likely a change in the maximum
temperature thermometer that seems to have occurred
in late 1958 from an Amarell 850 to a Fuess 1106 type
combined with a small (21 m) relocation of the screen

to a more open position (1946–87) from a position in
close proximity to a wall (1.2 m away from the NNW
facing wall, 1942–45). The instrument shelter was surely
in a shaded position for the entire winter season during
its close proximity to the NNW facing wall of the uni-
versity, meaning that maximum temperatures were
likely to have been cooler than when the screen was
located in a more open position where it could have
been exposed to periods of sunshine. By this reasoning,
the temperature adjustments to the winter months
should be positive as suggested by the HOM method.
Another interesting piece of metadata is that the ref-
erence station Kremsmünster had a camouflage net
cover during the years of 1943–45 and this could have
been one reason why it was not included in the
weighted reference series for Graz-Uni (I. Auer 2005,
personal communication). This could have artificially

FIG. 9. The fitted and sampled CDF before (solid
black line, open gray circles) and after (dashed black
line, gray crosses) each inhomogeneity in Graz-Uni: (a)
HSP 1 using the WAK and HSP 2 using the GEV dis-
tribution, (b) HSP 1 and HSP 3 using the GEV distri-
bution, and (c) HSP 1 using the PE3 and HSP 4 using the
WAK distribution.
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influenced maximum temperature measurements and
therefore altered the relationship between the stations.
There could be a number of other reasons for this dis-
crepancy, which are discussed in section 6. However,
later in this section we present further evidence that the
HOM method is producing an accurate result.

The adjustments to HSP 4 (Fig. 10c) were calculated
based on the reference data from Vienna (HSP 2) and
indicate that a large shift in the mean (averaged over all
percentiles) of �3.2°C of the series is required. While
this is in agreement with the suggested shift value of
�2.0°C, it is a significant difference. This large shift in
the mean is also obvious from the fitted models shown
in Fig. 8c (comparing before and after) and does not
seem to be the result of model overfitting, since there is
a high correlation between the two stations and a large
number of observations used to build and apply the
model.

Figure 11 compares February-averaged daily maxi-
mum temperature homogenized series using our
method and the unhomogenized February averaged se-
ries. In general, it is apparent that the entire series be-
fore 1988 has been made warmer, which has substan-
tially decreased the overall trend of February tempera-
tures over the last 110 yr.

We extended our results and applied the HOM

method using a variety of reference stations to all other
months of daily maximum temperature at Graz-Uni.
The reference stations used above were the closest and
most highly correlated, so we expect the HOM method
to be most accurate using these stations. However, in
order to assess the validity of the adjustments, we used
a number of other surrounding stations that were not so
well correlated to Graz-Uni (in no cases did we use a
reference station listed in Table 5 that had a correlation
of less than 0.75 with Graz-Uni).

Figure 12 compares the adjustments found by Auer
et al. (2001) with the mean of the adjustments using the
HOM method using four different reference stations
for each HSP. For HSP 2 (Fig. 12a), it can be seen that
there is good agreement in the sign and magnitude of
the mean adjustments over all months; however, some
notable exceptions exist using Zagreb, Croatia, as a ref-
erence station for February and March where differ-
ences are around 1.0°C. Generally, in HSP 4 (Fig. 12c),
the sign of the mean adjustment was correct but the
magnitude of the mean adjustment was larger using
some reference stations rather than others. For ex-
ample, the largest differences between the HOM
method adjustments were in February using Vienna
and Potsdam, Germany, as reference stations. Note
that Potsdam is over 600 km away from Graz-Uni and

FIG. 10. Same as in Fig. 3, but to Graz-Uni for (a) HSP
2, (b) HSP 3, and (c) HSP 4.
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so the confidence in this mean adjustment value is low.
Other mean adjustments for February using Zagreb
and Prague, Czech Republic, agree quite well. In HSP
3 (Fig. 12b), the mean adjustments agree more consis-
tently in the summer half of the year than in the winter
half. In most months, the HOM method adjustments
are the same sign as the Auer et al. (2001) adjustments.
The most striking of these differences is again the
month of February. However, the fact that in the winter
half of the year there is consistency between the mean
adjustments using the HOM method at various refer-
ence stations indicates that the HOM method is accu-
rate.

We also examined the percentile adjustments for
each month and each HSP (not shown) for any system-
atic changes in the variance and skewness characteris-
tics and conclude that for HSP 2 in the months of No-
vember, January, and February, there is an increase in
variance required. All other months show a more con-
stant adjustment over all deciles except May and Oc-
tober, which require a positive and negative skewness
adjustment, respectively. The adjustments for HSP 3
are more varied and less systematic over the seasonal
cycle; however, a positive skewness is needed in the
months of February, March, May, and November and a
decrease in variance in September, October, and De-

cember. For HSP 4, there was an increase in the vari-
ance of summer months needed whereas the remaining
months showed a constant adjustment over all deciles.

5. The effects of using the HOM method on an
extreme index

In this section, we compare the adjustments made to
the artificial candidate station and Graz-Uni maximum
temperatures using the HOM method and the more
straightforward mean difference approach. We exam-
ined the effects of both methods on the variability of an
extreme temperature index called txf90, which is part of
a family of indices commonly used in the assessment of
changes to temperature extremes (e.g., Collins et al.
2000; Manton et al. 2001; Frich et al. 2002). The txf90
index simply counts the frequency of daily maximum
temperatures above the long-term 90th percentile (in
this case, the normal period used was the entire period),
expressed as a percentage of days of a particular season
or month that exceeds this threshold. The mean differ-
ence method was calculated using the HOM method as
described in section 3, but instead of binning the dif-
ferences between the fitted and observed series at the
candidate station, we simply took the mean of the dif-
ferences.

FIG. 11. A comparison of the February monthly averaged daily Graz-Uni inhomogeneous
time series (dashed gray line) and the homogenized time series using the new method (solid
black line). Black vertical lines denote the boundaries between the HSPs defined in Table 4.

TABLE 5. Basic metadata of daily maximum temperature records used in this study ordered by the approximate distance from the
candidate station, Graz-Uni. Details are obtained from Auer et al. (2001) for the Austrian stations and from the EMULATE (2002)
database for all other stations.

Station name Data availability Latitude Longitude
Elevation
(m MSL)

Distance from Graz-Uni
(�km)

Graz-Uni 1894–2003 47°05�N 15°27�E 366 –
Vienna 1855–2003 48°14�N 16°21�E 198 144
Kremsmünster 1876–2003 48°03�N 14°08�E 383 146
Zagreb 1861–2003 45°49�N 15°58�E 157 146
Salzburg 1874–2003 47°48�N 13°00�E 437 200
Prague 1775–2003 50°04�N 14°25�E 191 340
Bamberg 1879–2003 49°52�N 10°52�E 282 458
Potsdam 1893–2003 52°22�N 13°04�E 81 611
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Figure 13a shows that there is a considerable differ-
ence in the variability and the trend of txf90 calculated
using the two methods on the artificial data. The index
txf90 using the mean difference method shows large
overestimations around 1970 in the artificial candidate
series. Between 1863 and 1888, there are zero occur-
rences of txf90 in the series homogenized using the
mean difference approach.

The differences between using the mean difference
approach or the HOM method on the Graz-Uni txf90
series are not obvious from the linear trend (Fig. 13b)
since they are almost equal; however, there are some
differences in the variability of individual years. For
instance, in the mid-1970s, the mean difference method
underestimates txf90 by between 3% and 7%, while
during some years after the 1990s, the mean difference
method overestimates txf90.

6. Conclusions and discussion

We have shown the usefulness of a new method of
homogenizing daily temperature measurements for
changes in the CDF of a composite temperature series
at moments higher than the mean.

When used on artificial data, the method reliably cre-
ates a daily composite record between two homoge-
neous subperiods of a candidate station that have dif-
ferent statistical moments of the mean, variance, and
skewness. Typically, the magnitudes estimated at the
95% CI between the true inhomogeneity in the mean
and the HOM method were within 0.3°C, even when
there was a change in the HOMs as well. Further ex-
periments with artificial data provided justification for
using a nonlinear model instead of a linear model and
for setting the parameters of the nonlinear model as we
did. Typically, daily errors between the truth and the
adjusted daily series were 0.2°C higher when using a
linear model instead of a nonlinear model for HSP,
which had a change in skewness. We showed that mak-
ing the nonlinear model smoother resulted in better
adjustment statistics when the correlation between the
candidate and the reference was below 0.8.

When applied to real February daily maximum tem-
perature data measured at Graz-Uni, Austria, there
was a general agreement between the results of this
study and previous studies with a significant exception
for one inhomogeneity, which will be discussed in more
detail below. The mean of the HOMs’ method adjust-

FIG. 12. The mean (cumulative) adjustment (°C; over
all deciles) of the HOM method using various reference
stations compared with the cumulative adjustments
from Auer et al. (2001) for each month for (a) HSP 2,
(b) HSP 3, and (c) HSP 4 at the candidate station, Graz-
Uni. See the legend on each plot for more information
regarding which reference station was used.
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ments for the other months was shown to be coherent
with the adjustments by Auer et al. (2001) in HSP 2 and
4, while in HSP 3, there was better agreement only in
the summer months. However, using reference stations
other than Vienna and Kremsmünster helped to con-
firm that the HOM method was giving consistent re-
sults. Closer examination of the adjustments over each
decile and each month revealed that systematic changes
in the variance and skewness characteristics were
needed.

We propose that this method could also be used with
daily minimum temperature, daily mean temperature
series, and daily sea level pressure, since the spatial
correlation is also as high as daily temperature or
higher. However, this method is not likely to be suitable
to homogenize daily precipitation measurements since
the typical decorrelation scales are much lower, al-
though it would be useful to test the method given a
suitably dense network of stations (if they exist).

Previous methods of homogenizing daily tempera-
ture are not made redundant by this approach if the
inhomogeneity is adequately modeled by a constant dif-
ference change in mean since this method can be sen-
sitive to overfitting of the nonlinear model, especially
when there is no obvious change in higher-order mo-
ments. However, as shown in section 5, if there is a
significant change to the HOM of a candidate station,

the application of an adjustment to the mean only fails
to adequately adjust the extremes and the derived ex-
treme indices are not as accurate as they could be.

Our method could be used as an “add-on” homog-
enization procedure to many existing methods since it
uses the HSPs identified by previous homogenization
studies of monthly and annual temperature time series.

a. Some practical issues of using this method

To be as confident as possible in the adjustments, a
suitable reference station must be chosen. In general,
the reference station ideally has a high correlation with
the candidate station. By this statement we mean that
the candidate and reference stations should have a simi-
lar climate and be affected by the same local processes.
As we have seen in section 3, if the correlation between
the candidate and the reference was lower than 0.8 or if
the number of observations used to build and apply the
model were less than 1000, certain parameters of the
model [detailed in Eq. (3)] were adjusted to make the
model less sensitive to outliers or overfitting in the tails
of the distribution. Our experiments in section 3e show
that reference stations are ideally correlated at 0.9 or
above with the candidate station; however, correlations
with stations as low as 0.7 could still be useful given a
sufficiently high number of observations to build and
apply the model (greater than 1000). Since the method
only uses one reference station to estimate the adjust-
ments, it is important that all inhomogeneities in that
series be accurately determined for the creation of the
HSPs. If more than one suitable reference station is
available, a comparison between the adjustments from
each could be made. If the results were consistent then
we may be more confident that adjustments to higher-
order moments and the use of this method are justified.
This was shown to be the case in section 4 where we
applied four different reference stations to each HSP;
however, we note that some of the reference stations
were not ideal.

The remarks above lead to a discussion of the differ-
ences we observed between the suggested shift values
for our example station, Graz-Uni. When we applied
our method to February maximum temperature at
Graz-Uni, there were some major differences in the
adjustment applied to HSP 3 in the months of January–
March. Based on the results in Fig. 12, it has been
shown that the HOM method is giving congruent posi-
tive mean adjustments in the winter half of the year for
HSP 3 that are generally larger than those shown in
Auer et al. (2001). A more detailed comparison of our
method to that of Auer et al. (2001) is needed to de-
termine which of the two adjustments is more correct.

However, a result like this may not be unexpected

FIG. 13. A comparison of the derived monthly extreme indexes,
txf90, and their linear trends with the raw data homogenized using
the HOM method (black bars and line) and the mean difference
method (dashed gray bars and lines) for the (a) synthetic candi-
date station and (b) February maximum temperature at Graz-Uni.
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since Böhm et al. (2001), Auer et al. (2001), and many
other previously mentioned homogenization studies
have estimated their shifts to the mean from a differ-
ence series that has been created from a reference se-
ries that generally is a weighted average of many sur-
rounding stations’ monthly data. Weighted reference
series generally have the advantage of being more rep-
resentative of a climatic region, whereas a single refer-
ence station is representing the variability of climate on
a smaller scale. A disadvantage of a weighted reference
series could be that the individual station records used
were not homogenized, so the series may not be truly
representative of a larger area. The reference series can
also have a different variance to the candidate series,
which may influence the magnitude and significance of
the mean shift value.

So, in summary, discrepancies like this will occur be-
tween the method we have presented here and previous
studies based on a monthly weighted reference series
because of the issue of spatial representation.

An implicit assumption of this method not previously
mentioned is that the relationship between the candi-
date and the reference station is stationary over time. A
change in this relationship can be viewed in two sepa-
rate ways here. Either it changes because of the internal
variability of a chaotic dynamical system or because of
the fact that we had estimated the relationship using a
finite sample of the parent distribution. Unfortunately,
in this study it is not known if this assumption has been
violated or not. Two ways to test the sampling variabil-
ity would be to use a cross-validation approach to build
the model and/or to use more reference stations where
they are available.

b. Further research and possible improvements to
the method

An obvious generalization of the method could be
made to include many reference stations if they had
suitable HSPs overlapping the candidate HSPs before
and after an inhomogeneity. The spatial correlation
structure of these surrounding reference stations could
be utilized by a geostatistical method of interpolation to
estimate the observations at the candidate station after
the inhomogeneity. This may help address the issue of
the spatial representativeness of the reference series.
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