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ABSTRACT: Accurate assessment of the magnitude and frequency of extreme wind speed is of fundamental importance
for many safety, engineering and reinsurance applications. We utilize the spatial and temporal consistency of the European
Centre for Medium Range Forecasts ERA-40 reanalysis data to determine the frequency of extreme winds associated with
wind storms over the eastern North Atlantic and Europe. Two parameters are investigated: 10-m wind gust and 10-m wind
speed. The analysis follows two different view-points: In a spatially distributed view, wind-storm statistics are determined
individually at each grid-point. In an integral, more generalized view, the wind-storm statistics are determined from extreme
wind indices (EWI) that summarize storm magnitude and spatial extent. We apply classical peak over threshold (POT)
extreme value analysis techniques (EVA) to the EWI and grid-point wind data. As a reference, a catalogue of the 200
most prominent European storms has been compiled based on available literature. The EWI-based return periods (RP)
estimates of catalogue wind storms range from approximately 0.1 to 300 years, whereas grid-point-based RP estimates
range from 0.1 to 500+ years. EWIs sensitive to the absolute magnitude of wind speed rank the RP of wind storms in
the 1989/1990 and 1999/2000 extended winter season similarly to the RP derived from the distributed approach. The RP
estimates derived from EWIs are generally higher when calculated using only land grid-points compared to RPs derived
using whole domain. Both the uncertainties in EWIs and grid-point-based RPs show a greater dependence on the wind
parameter used than on the uncertainty associated with the EVA for RPs less than 10 years, whereas for RPs greater than
10 years the effect of the different datasets is lower. The EWIs share up to approximately 50% of the variability of the
local grid-point RPs. Copyright  2008 Royal Meteorological Society
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1. Introduction

The exceptional severity of wind storms associated with
cyclonic disturbances has long been recognized as a
prominent feature of the North Atlantic and European cli-
mate (Lamb, 1991; Schiesser et al., 1997). Strong winds
and their associated influences on the sea state have
been responsible for many shipping-related or coastal dis-
asters (Lamb, 1991). Extreme winds over Europe also
represent a major loss potential for reinsurance compa-
nies (MunichRe, 2000; SwissRe, 2000). This study aims
at developing a continental-scale summary measure of
the storminess of known severe winter wind storms in
Europe during the past four decades. This measure shall
be expressed in terms of the return period (RP) with
which a storm of similar or greater intensity is expected
in the area. The RP of storms can be a valuable measure
in comparing actual and past events and in assessing their
impact in terms of meteorological causes and societal vul-
nerability. This study was in part motivated by the needs
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of the reinsurance industry. In this sector, hindcast simu-
lations with high-resolution limited area weather models
are increasingly used as a source of information on the
surface wind field (Weisse et al., 2005; Leckebusch et al.,
2006; Walser et al., 2006). In combination with dam-
age models, hindcasts of past storms can be used for
quantitative risk assessment. In such a procedure, how-
ever, estimates of RPs are needed for placing the limited
number of hindcast cases into a climatological context,
i.e. deriving the probability distribution of loss. Such a
procedure is currently envisaged by the Partner Reinsur-
ance Company (PartnerRe), building upon high resolution
dynamically downscaled wind fields for approximately
100 storms of the past decades (Schubiger et al., 2004;
Turina et al., 2004).

What is the RP of the storm Vivian? In its general
sense, this is not a well-posed question. The meteo-
rological storminess of any one storm is characterized
by several parameters (e.g. location, path, maximum
wind, spatial extent, duration), and the RP of a storm
will inevitably depend on how different characteristics
are combined into a scalar measure. Moreover, the RPs
derived from continental-scale characteristics will be of
limited representativity at the local scale. However, the
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demand for a compound and continental-scale RP derives
primarily from the ease of use in practical applications.
Note that in many situations a fully quantitative climato-
logical assessment simply cannot be afforded. For exam-
ple, the reinsurance needs would require a continuous
high-resolution hindcast (e.g. a high-resolution reanal-
ysis) over several decades. In such situations, RPs are
valuable summary measures, which help the selection
of suitable study cases, which place those cases into a
climatological perspective, and hence, support an over-
all risk assessment from selected scenarios. It must be
kept in mind the inevitable uncertainty associated with
the details of measuring storminess and the limited local
representativity needs to be carefully considered in con-
crete applications.

In this study, we propose a generic procedure for quan-
tifying the RP of storms over the European continent.
The procedure relies on the definition of a scalar index
(an Extreme Wind Index, EWI) that characterizes stormi-
ness in a two-dimensional wind field, and the subsequent
analysis of the resulting index time series with meth-
ods of extreme value statistics. We apply this procedure
to derive RPs for a set of prominent high-impact storm
events of the recent decades, building on a coarse reso-
lution reanalysis (the reanalysis ERA-40 of the European
Centre for Medium Range Weather Forecasting, Uppala
et al., 2005). In our study, we address the following spe-
cific questions:

1. How reliable are wind parameters in the ERA-40
reanalysis (spatial representativity, temporal homo-
geneity) for estimating RPs of high-impact storm
events over Europe?

2. How sensitive are estimates of RPs to the details in
the definition of the EWI?

3. What is the degree of uncertainty in estimating conti-
nental scale and grid-point-scale RPs for past storms?
Which factors contribute most to the uncertainty?

4. How representative are continental-scale estimates of
RPs as a measure of the local recurrence of a storm?

We chose to use the ERA-40 reanalysis dataset since
it has the temporal and spatial homogeneity needed
for a continental-scale overview of the European storm
climate. Other possible data sources, such as in situ wind
observations or derived wind from atmospheric pressure
generally have limited spatial resolution and/or spatial
representativeness and temporal inhomogeneities (e.g.
Smits et al., 2005). Reanalysis datasets are generated by
data assimilation systems used by state-of-the-art global
weather forecasting models, which extend over several
decades and provide physical consistency with all in situ
observations available in the assimilation process.

Previous studies documenting the extreme wind cli-
mate of the North Atlantic and Europe use a number
of different data and methodologies depending on the
aim of the study. Those aimed at characterizing the
absolute mean and extreme wind climate at a local or
regional scales have analysed either in situ wind data,

air pressure or wind speed derived from air pressure
observations (e.g. Dukes and Palutikof, 1995; Kristensen
et al., 1999; Sacré, 2002; Barring and von Storch, 2004;
Alexander et al., 2005; Smits et al., 2005; Walter et al.,
2006). Most continental-scale storminess studies have
focused on either using air pressure observations (Lamb,
1991; Schinke, 1993; Kaas et al., 1996; Alexandersson
et al., 1998), derived wind from air pressure observations
(Schmith et al., 1998; Miller, 2003), sea level datasets
(e.g. Bijl et al., 1999), derived wind sensors aboard satel-
lites (e.g. Monahan, 2006) or use of reanalysis data (Yan
et al., 2002; Pryor and Barthelmie, 2003; Pryor et al.,
2006a; Yan et al., 2006; Seierstad et al., 2007). None of
these studies have attempted to assign RPs to known his-
torical storm events on the European scale.

Climate change has promoted a wide study of the
potential impacts of the enhanced greenhouse effect on
the frequency, duration and intensity of wind storms
in a future climate compared to today. Held (1993)
provides a good introduction to the expected response
of large-scale climate to global warming. Recent studies
(e.g. Knippertz et al., 2000; Rockel and Woth, 2007;
Schwierz et al., 2008; Ulbrich et al., 2008) expect an
increase in both the intensity and the frequency of
high winds causing storms over Europe in 2071–2100
compared to today. Other studies show a more muted
response of storminess in a future climate (Beersma et al.,
1997; Bengtsson et al., 2006; Pryor et al., 2006b). In
summary, the confidence in future wind-storm changes
is low, although it seems likely (>66% chance) that
there will be an increase in extreme winds over the
North Atlantic and central Europe (Christensen et al.,
2007). Thus far, observational evidence of an increased
intensity of cyclones and their associated surface winds
over the North Atlantic and Europe are not conclusive
when considering long-term trends (e.g. the past 100
years). Some studies show an increase in storminess and
extreme windiness during the period from about 1960 to
2000 in northwestern Europe (e.g. Alexandersson et al.,
2000; Pryor and Barthelmie, 2003; Alexander et al.,
2005), while during the same period other studies do not
show significant trends (e.g. Raible, 2007; Raible et al.,
2008) or artificial trends due to inhomogeneities (Smits
et al., 2005). The increase in storminess in recent decades
seems to be part of long-term multi-decadal trends (Kaas
et al., 1996; Carretero et al., 1998; Schmith et al., 1998;
Bijl et al., 1999; Jones et al., 1999; Alexandersson et al.,
2000). We therefore approach our task of creating an
extreme wind climatology without special attention to
long-term non-stationarities.

We start with an overview of the data used in this
study, where we focus on quality issues of the data used.
The following section defines various EWIs. We then
discuss the extreme value analysis (EVA), detailing the
choices made. The main results, including the extreme
wind climatologies and the RPs of prominent high-impact
events are presented followed by some discussion and
conclusions.
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2. Datasets

2.1. High-impact storm catalogue

In this study, we adopt a generic procedure for the
estimation of storm RPs to a catalogue of high-impact
winter wind storms, which have caused damage on the
European continent or are otherwise well known in the
reinsurance sector. We compiled our list starting with
the comprehensive Lamb catalogue (Lamb, 1991) and
supplemented this list with a number of other sources
(Barkhausen, 1997; MunichRe, 2000; SwissRe, 2000;
DWD, 2001; Heneka et al., 2006; KNMI, 2007). The list
encompasses a total of 200 wind storms which occurred
during the extended winter season from October to April
over the period 1957–2002. The list consists of either
a start and end date/time or simply a date/time for
each stormy period. Both the duration and date/time
of each storm is potentially biased to the time during
which the greatest impacts were experienced over the
area of interest of the authors of each source document.
Therefore, the storm dates do not necessarily coincide
with the maximum intensity of winds associated with
the storm which has repercussions for the attribution of
peaks in the index time series to the items in the storm
catalogue (see Section 5). Also, the adopted catalogue is
not necessarily a complete list of all possibly relevant
storms. We expect that storms over sea will not be
adequately represented. This is not critical for the results
of our analysis, since the storm catalogue is merely used
as an example application. In fact the omission of storms
from the catalogue would not alter the RP results.

2.2. ERA-40 Reanalysis

The climatological basis for our analysis is the ERA-40
reanalysis of the European Centre for Medium Range
Weather Forecasting (ECMWF, Uppala et al., 2005). It
is the product of a comprehensive assimilation of sur-
face, upper air and satellite observations into a global
weather forecasting model. The ERA-40 encompasses
physically consistent three-dimensional fields of atmo-
spheric and surface parameters at 6-hourly intervals over
the period September 1957–August 2002 (i.e. over 45
years). ERA-40 has a spatial resolution of about 1.125°.

For the purpose of this study, we use ERA-40 data over
the North Atlantic and European sectors from 35 °W to
35 °E, and 35 to 73 °N for all the 45 extended winter
seasons (October till April). This is known as the main
stormy period over Europe and is reflected in the source
documents used to compile our catalogue (see also Lamb,
1991). For technical reasons associated with the choice
of analysis domain (see Section 3) we used a 0.5° grid
version of ERA-40, encompassing a total of 10 857
(141 × 77) grid-points.

Two parameters from the ERA-40 dataset have been
considered in this study: a 10-m wind gust (FG10,
ECMWF parameter name) and a 10-m wind speed
(WS10). The values of wind gust at each analysis time
represent maximum gust values from the past 6 h. Hence,
wind gust seems to be ideal to describe wind peaks at the

surface, the ultimate cause of storm damages. However
wind gust is a model diagnostic, and therefore, depends
on the parameterizations in the numerical model under-
lying the assimilation system (see ECMWF, 2003 for the
parametrization method, available at http://www.ecmwf.
int/research/ifsdocs/CY23r4/index.html). In Section 2.3
we illustrate that wind gust shows unrealistic behaviour
near coasts and steep topography which requires masking
of certain areas. In contrast, the 6-hourly fields of WS10
represent instantaneous wind fields and do not necessarily
sample maximum storm intensity.

2.3. Data quality and homogeneity

The quality of reanalyses depends strongly on the param-
eter, for example, temperature is well represented, even
in mountainous areas (Kunz et al., 2007), other parame-
ters like integrated water vapour (Morland et al., 2006)
or precipitation might be less realistic in absolute terms.
In particular, there can be serious biases in absolute val-
ues of wind near the surface, (Smits et al., 2005), and in
some cases there are inhomogeneities (Bengtsson et al.,
2004; Sterl, 2004; Smits et al., 2005). The known wind
biases make it difficult to justify a climatology of abso-
lute wind measures directly from reanalysis (Caires and
Sterl, 2005). However, the limitations are primarily sys-
tematic and it can be expected that the relative ranking
of storms in a reanalysis is reproduced much more reli-
ably than the absolute wind. This is why the focus of
this study is entirely in the frequency domain (i.e. RPs)
where issues of data quality are far less serious.

Initial screening of wind fields in ERA-40 suggests
that in many cases there are unrealistic values of wind
gust. Compared to other areas, extremely high wind
gust values were found in areas of steep orographic
gradients. Figure 1 illustrates the case for storm Daria
(26 Jan 1990). The original wind gust field from ERA-
40 (Figure 1(a)) shows strong discontinuities and unre-
alistically high values over the Alps, coastal Scandi-
navia and parts of the Mediterranean (e.g. Greece).
Such artefacts are not present in the wind-speed field
(Figure 1(c)).

Areas with unrealistic wind gusts are almost identical
for other storms and they are collocated with areas
where the surface roughness, z0 values are highest in the
ERA-40 reanalysis wind gust parameterization (ECMWF,
2003). z0 shows (not shown, see Della-Marta et al., 2007)
a high contrast in values between ocean areas/smooth
orography and areas of complex orography such as the
Alps and the western coast of Scandinavia. Over land,
surface roughness in ERA-40 is a fixed parameter that
combines roughness lengths from land use and from
sub-grid-scale orography (ECMWF, 2003). Apparently,
the inclusion of sub-grid-scale orography has a high
impact on the realism of wind gusts over complex
orography. Note, the ECMWF has updated the wind
gust parameterization of its operational forecast model
in summer 2006. The parameterization now separates
the two contributions to surface roughness with a vast
improvement in the wind gust values.
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Figure 1. A comparison of the 72-hour maximum wind fields using
ERA-40 data for the storm, Daria (26 Jan 1990) (ms−1). (a) The
ERA-40 FG10 field, unmasked, (b) FG10 masked, and (c) WS10. Grey
areas denote masked values. This figure is available in colour online

at www.interscience.wiley.com/ijoc

To avoid that our scalar EWI is dominated by wind
gust values at a few extreme grid-points, we decided
to mask out areas with unrealistic wind gusts. For
this purpose we chose to mask grid-points where z0

is greater than 3 meters and at grid-points where the
elevation of the ERA-40 orography is greater than 700 m.
(Figure 1(b)) and also Della-Marta et al. (2007)). These
criteria are subjective, but they are motivated from a
visual inspection of the wind gust fields for many extreme
wind situations. Note that no masking has been applied
to fields of WS10, hence the latter covers the wind
conditions over the entire domain.

We also performed a basic check on the long-term
homogeneity of the ERA-40 wind parameters. The avail-
ability of new observation systems in the past decades

could in principal have affected the temporal homogene-
ity of the ERA-40. For this purpose, we have inspected
seasonal time series of the mean wind gust and wind
speed over the eastern North Atlantic. These time series
(not shown) reveal a high correlation with the North
Atlantic Oscillation Index (NAOI, typical r values of
0.8), an index which is independent of ERA-40 (Hurrell
et al., 2002) and measures the strength of westerlies over
the North Atlantic Ocean and Europe (see e.g Appen-
zeller et al., 1998; Wanner et al., 2001). The correlations
seem to be of a similar strength over the whole period,
and the time series do not show unexpected trends or
shifts. Although these elementary tests are no final con-
firmation of homogeneity, they do not reveal artificial
temporal changes that would seriously affect our EVA of
ERA-40-derived storm indices.

3. Extreme wind indices

Scalar indices (time series) are used to summarize a wind
storm’s magnitude and spatial extent. Each index uses
the grid-point wind speeds from ERA-40 as the basis for
calculation. A number of such different compound EWIs
were analysed by PartnerRe which we used as a basis
for the different indices presented below. Reinsurance
companies often need a singular estimate of the frequency
of a wind-storm event to estimate the expected frequency
of an aggregated loss over a portfolio. In other words,
they need a frequency estimate of the wind-storm event,
and not only the frequency (RP) of wind speed (or wind
gust) at a specific place. In this report, we only present
a selected number of such indices which we determined
to be independent enough and useful in the assessment
of the RPs. Since the magnitude of EWIs is likely to
be dependent on the area over which the indices are
calculated, we decided to investigate using either all
grid-points in the domain or land only grid-points in the
domain. In all cases, except where specified, the FG10
data were masked as explained above. Where possible,
we tried to take into account the unequal areas of each
grid box by weighting of sums and multipliers by the
cosine of the latitude of each grid-point. For each index
we provide a brief rationale and their expected sensitivity.
Detailed descriptions of each index in mathematical
notation can be found in Appendix A.

X: Mean wind. This index is a time series of the
weighted (for latitude) mean wind speed calculated over
a given area (either all grid-points or only those over
land) in the units of ms−1. This index is simple and is
intuitive as a starting point for comparison with more
complex indices described below. The index is likely to
be sensitive to both the severity of the wind storm (at
each analysis time) and its spatial extent.

Q95: The spatial 95% quantile wind. This index
summarizes the wind speed in the windiest 5% of
(latitude weighted) area per unit time. At each point
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in time the wind speeds at all grid-points are ranked
and the empirical 95% quantile chosen as the value for
this index. In other words this index measures the lower
bound of wind speed in the top 5% of the area considered.
Therefore, this index is concentrated on measuring only
the windiest area in the domain at any given time and is
more likely to be an estimate of storm severity than X

(units of ms−1).

Sw3q90: Cube root of the sum of wind cubed above
the domain climatological 90% quantile. This index is
motivated by considering the area and time integral of
kinetic energy associated with extreme winds expressed
as the Power Dissipation Index (Emanuel, 2005) non-
dimensional units, (NDU). In our case, we ignore the time
integral component but incorporate the area component
by summing over the area of interest. Note that Emanuel
has used the maximum sustained wind whereas our
estimates are based on either maximum wind gust or
instantaneous wind speeds. This index first calculates
the 90% quantile based on all grid-points in the domain
for the entire ERA-40 period. This ensures that only
areas with absolute relatively high wind-speed areas are
considered. Then the excess winds at all grid-points
which exceed this threshold are cubed and summed. The
cube root is then taken as a final step to help make
the index less skewed. This index gives cubic weight to
grid-point wind-speed exceedences, and therefore, should
be sensitive to areas of high absolute magnitude wind
speeds. This index is similar to that used in Klawa and
Ulbrich (2003) but takes into account the full domain
climatology. They use the cube of the excess above a
local based percentile. The indices described below also
show similarities to their index.

Sf q95: Sum of the fraction of wind divided by the
grid-point climatological 95% quantile. It is envisaged
that this index summarizes the extremity of wind speed
over a given area relative to the local extreme wind cli-
mate at each grid-point (NDU). The index first calculates
the 95% quantile of wind speed at each grid-point in the
chosen domain using all wind speed observations during
the extended winter season over the ERA-40 reanalysis
period. Then, at each time step and for each grid-point
with wind above the local 95th percentile, the fraction of
wind speed above the local 95th percentile is summed.
This index is only sensitive to extreme wind speeds rel-
ative to local climate, and therefore, not sensitive to the
magnitude of wind speed in absolute terms.

Sf q95q99: Sum of the fraction of extreme wind
divided by the length of the distribution tail. This
index should also be sensitive to the relative extremity of
local wind speed, however, unlike Sf q95 this index has
a normalizing factor which is proportional to the length
of the tail of the local extreme wind distribution (NDU).
This index should give equal weight to the winds in a
storm region whether the storm be located over the sea
or land, especially where we see a contrast in both the

scale and shape of the local extreme wind distribution
(see Figure 8(c) and 8(d)).

4. Return periods derived from extreme value
analysis

The second step in our procedure consists in estimating
the frequency distribution of scalar EWIs. The RP for a
given storm is then specified as the exceedence frequency
of the value of that storm’s EWI. For this step of
the procedure we choose classical techniques of EVA.
These techniques are based on the asymptotic statistical
behaviour of extreme values and they permit unbiased
estimates of the tail of the EWI’s distribution function.
Fisher and Tippett (1928) and Gumbel (1958) have
put forward the theoretical foundations and application
principles, respectively, of EVA (an introduction to EVA
is given in, e.g. Coles, 2001). The methods have also been
widely used for the analysis of extreme wind speeds, and
Palutikof et al., 1999 review procedures and applications
in this particular context.

In our application of EVA we use the Peaks Over
Threshold (POT) approach. In this approach, we consider
independent exceedences of the EWI above a suitably
chosen threshold and model their distribution with a
Generalized Pareto Distribution (GPD). Our application
essentially follows the classical procedure as described
in Coles (2001, Chap. 4). Specifically we adopt the
maximum likelihood principle for the estimation (MLE)
of the GPD parameters, and (in slight deviation from
Coles, 2001), assume a Poisson distribution for the
events exceeding the threshold (see also Palutikof et al.,
1999). More specific approaches were adopted in the de-
clustering of threshold exceedences, in the determination
of a suitable threshold, and in the calculation of sampling
uncertainty. In the following subsections we describe
these steps in more detail.

In order to introduce notation that will be used
throughout the paper we rewrite the relevant formulae
from Coles (2001) and Palutikof et al. (1999). The GPD
can be written in terms of a generic variable x as:

G(x) = 1 −
[

1 + ξ

σ
(x − u)

]− 1
ξ

(1)

Conditional on x > u and ξ �= 0 where u is the selected
threshold. The GPD is characterized by two parameters, ξ

the shape parameter and σ the scale parameter. If ξ > 0
then the maximum of the GPD is unbounded, whereas
if ξ < 0 then the tail has a finite extent, if ξ = 0 then
the GPD reduces to the exponential distribution and is
also unbounded in the limit ξ → 0. Equation 1 can be
rewritten in terms of probabilities which leads to the
calculation of the N -year return level (RL), xN which is
exceeded once every N years (the RP) and is given by:

xN = u + σ

ξ

[
1 − (λN)−ξ

]
(2)
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Where λ is the mean number of threshold exceedences
per unit time.

To find the RP of each catalogue storm we first
rearrange Equation 2 in terms of N and substitute all the
values of the EWI or the grid-point wind speed within
a 72-h period centered on the date/time in the storm
catalogue. We then take the maximum value of N as
the RP of a particular storm.

4.1. De-clustering

The asymptotic theory underlying the POT approach
requires that threshold exceedences are statistically inde-
pendent and are from a stationary random process. Raw
time series of an EWI are unlikely to satisfy this condi-
tion. Spanning over as much as seven months of the year
we anticipate that the EWI time series are influenced by
the annual cycle. Also, synoptic disturbances over Europe
have a lifetime considerably longer than the 6-h time
resolution of the index, which will reflect in serial corre-
lation in the index time series. Indeed, serial correlation
is obvious in the partial autocorrelation function of the
EWI time series (not shown).

De-clustering is a pre-processing of the original time
series which aims at extracting threshold exceedences
that can be considered statistically independent. Most
de-clustering methods are based on the estimation of
a statistic called the extremal index θ . The extremal
index can be thought of as the reciprocal of the limiting
mean cluster size (Coles, 2001). In the presence of no
autocorrelation (clustering) in the series then θ = 1. Else
if θ < 1 then there is clustering in the data. In our de-
clustering of the EWI time series we chose an estimator
of θ proposed by Ferro and Segers (2003). Their extremal
index is based on the inter-exceedence times and it
represents the proportion of inter-exceedence times that
may be regarded as times between independent clusters.
They show that their estimate of θ has better de-clustering
characteristics than other commonly used methods, e.g.
the runs de-clustering. Moreover, their method has the
advantage that it is automatic in the sense that θ changes
with changes in the POT threshold. Hence threshold
selection (see below) and de-clustering are actually linked
together.

Ferro and Segers (2003) stipulate that their estimate
of θ is only representative if it is calculated on a strictly
stationary series. Analyses in our application to EWI time
series shows that the performance of the de-clustering
method is degraded by the contribution from the annual
cycle in these time series. In order to compensate for
this we take account of the seasonal cycle in terms of
a threshold that varies across the season. The threshold
for a particular calendar day is calculated from the 95th
percentile of all four daily analyses time steps (i.e. from
4 × 45 values) for that particular day, and subsequent
application of a smoothing spline operator to the resulting
quantile time series. Note, the filtering of the annual
cycle is only adopted to de-cluster compound EWI times
series but not for the analysis of wind time series at

Figure 2. Examples of the EWI, Sw3q90 and the daily de-clustered
POT series using the approach of Ferro and Segers (2003) for the
extended winter season (ONDJFMA) of 1989/1990 (a), and 1999/2000
(b). The thin black line is the Sw3q90 index calculated over land using
WS10. The circles indicate values of the index which exceed the daily
threshold (solid black line). Grey filled triangles show the maximum
value of the index within each cluster. Membership of POTs (circles) to
a particular cluster are denoted by alternating light and dark grey bands
on the top margin of the plot. The solid black line and dashed black
line show the daily 95th percentile and the seasonal 95th percentile
respectively. The vertical grey lines indicate the date of the storms in

the storm catalogue.

individual grid-points, where the annual cycle was clearly
less evident.

Figure 2 displays results of the de-clustering method
for index Sw3q90 (based on WS10) and for two extended
winter seasons (1989/1990 and 1999/2000). The EWI
time series exhibits prominent peaks which are mostly
coincident with storms in the storm catalogue (vertical
grey lines). The peaks seem to be superimposed onto
a gradual annual cycle whose climatological evolution
is indicated with the time varying threshold. The de-
clustering technique seems to resolve this obvious depen-
dence in that the clusters (see shading at the top of
the panels) mostly contain periods with semi-contiguous
threshold exceedences. For example, Daria and Vivian
(Figure 2(a), 7th and 14th vertical lines from the left)
are clearly in separate clusters, whereas the two storms
Vivian and Wiebke (14th and 15th vertical lines) are
closely related, and therefore, merged into the same clus-
ter by the methodology. A similar example is evident in
season 1999/2000 (Figure 2(b)) where the storm Anatol
(1st vertical line) is clearly a separate cluster, whereas
the storms Lothar and Martin (2nd and 3rd vertical lines)
are merged. This has implications for the EVA such that

Copyright  2008 Royal Meteorological Society Int. J. Climatol. (2008)
DOI: 10.1002/joc



THE RETURN PERIOD OF WIND STORMS OVER EUROPE

only the maximum wind within a cluster (grey trian-
gles, Figure 2) is used in the GPD model. Hence in
this case the storms Lothar and Martin are treated as
one storm. Note, that similar difficulties are encountered
for storms in the catalogue when the corresponding EWI
value is so low as to not exceed the threshold. A more
detailed comparison between the Ferro and Segers (2003)
de-clustering and the classical runs de-clustering (not
shown) reveals that there is little sensitivity on the RP
results to these two de-clustering methods (Della-Marta
et al., 2007).

Figure 3 depicts similar de-clustering results calculated
from wind time series at two individual grid-points
(a) north of the British Isles, (b) northeast of Europe.
Extreme value analyses for individual grid-points is used
for comparative purposes and for representativity tests
(see later Section 5). The time series of WS10 show less
serial correlation than the index time series. Catalogue
storms tend to coincide with wind peaks (as is the case
with the EWI, Figure 2), but there is obviously much
weaker correspondence due to the more local character
of time series at grid-points.

4.2. Threshold choice

The threshold of the POT analysis should be large
enough to ensure near-asymptotic behaviour of the excee-
dences. There are several diagnostic means to estimate
a suitable threshold. These diagnostics build upon the
known threshold dependence of GPD parameters in the
asymptotic tail (Coles, 2001). In this study, we have

Figure 3. As for Figure 2 but for the grid-points 2.5 °W, 57.5 °N (a),
and 30 °E, 67.5 °N (b). Note that the EVA was performed on raw wind

values (units of ms –1) at each grid-point.
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Figure 4. Modified Scale, σ∗ (see Coles, 2001) (a) and the shape
parameter, ξ , (b) diagnostic plots for selecting the fixed threshold NDUs
above which the de-clustered POT are modelled using the GPD. This
example is based on the de-clustered POT Sw3q90, WS10 using the
land-only region. The vertical black lines denote the 95% confidence
intervals calculated using the parametric resampling technique detailed
in Section 4.3. The numbers aligned vertically in the top of the plot are
the number of cluster maxima identified by the de-clustering technique.
The lowest threshold value shown in each plot is the seasonal 70th

percentile, and the vertical grey line is the 95% quantile threshold.

inspected the asymptotic independence of the GPD shape
parameter and modified scale parameter upon threshold
(Coles, 2001, chapter 4). These diagnostics are depicted
in Figure 4 for index Sw3q90 (based on WS10). For
threshold values smaller than about 6 NDUs there is
clear dependence of the parameters on the threshold,
but at larger values the variations are mostly contained
within the uncertainty ranges of individual estimates.
For the index under consideration a value of 6 cor-
responds approximately to the 95th percentile (verti-
cal grey line). Note that we have constrained these
results by the choice of daily quantile used to de-
cluster the time series (see above), and hence, the
de-clustering and threshold selection are not indepen-
dent of each other. Inspection of similar diagnostics for
other indices reveals that the 95th percentile is a gen-
erally acceptable choice of threshold. Based on these
results, we have chosen the pertinent 95th percentile
as the threshold for all indices. Clearly, there is no
final proof that a particular choice is sufficient, since
the assessment is also limited by sampling uncertainty.
Some additional confirmation is, however, available from
quantile-quantile plots (see example in Figure 5), which
demonstrates a good fit of the theoretical distribution
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to the data. Additional checks are given in Della-Marta
et al. (2007).

Threshold diagnostics for time series of wind at indi-
vidual grid-points also show that a threshold correspond-
ing to the 95th percentile is acceptable, i.e. asymptotic
behaviour was assured only beyond that value. Figure 6
depicts the diagnostics for WS10 at one example grid-
point. A value of 15.8 ms−1 corresponds to the 95th
percentile. Consideration of several grid-points suggested
this quantile as a reasonable setting for the POT analysis
at individual grid-points. For the de-clustering, however,
we kept the seasonally varying threshold at the 90th
percentile which insured that only grid-points with an
exceptionally strong seasonal cycle included a seasonally
varying threshold.
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Figure 5. A quantile-quantile (qq) plot (NDU) of the fitted GPD to the
de-clustered POT Sw3q90, WS10 for the land-only region.
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Figure 6. As for Figure 4 but for the declustered POT WS10 grid-point
2.5 °W, 57 °N.

4.3. Sampling uncertainty

Results from EVA can be subject to considerable sam-
pling uncertainty. Classical procedures for estimating the
uncertainty of GPD parameters (and related quantities,
such as the RPs) encompass the asymptotic maximum
likelihood confidence intervals (also termed the delta
method, see Coles, 2001), and resampling techniques. The
latter builds on repeated estimates with random draws
from the dataset (non-parametric) or with random draws
from the best estimate distribution (parametric). Both
these techniques turned out to have limitations in our
application (see comparison below).

In the present study, we calculate confidence intervals
of RP estimates using the profile likelihood method.
Profile likelihood confidence intervals are based on a
likelihood ratio test. In practise, they are calculated
from a projection of the likelihood surface on the
respective parameter axis, which can be obtained from a
sequence of numerical optimizations (Coles, 2001). The
likelihood profile method is related to the delta method
but exploits the true shape of the likelihood surface
instead of approximating it around its maximum. As a
consequence, calculating confidence intervals with the
likelihood profile methods makes more efficient use of
the data points in the sample.

A comparison of results from all three techniques is
depicted in Figure 7 for index Sw3q90 (based on WS10).
The figure shows the RL as a function of RP with
pertinent confidence intervals from all three methods. The
curvature of the best estimate (middle thick line) suggests
that this index (like most others in this paper) exhibits
a short tail behaviour and hence its distribution function
has an upper bound. The best estimate of the upper bound
is around 90 NDU, but there is considerable uncertainty
about its value. According to the delta method (dash-
dotted line) and the parametric resampling (dashed line)
there is non-zero probability that the upper bound is 84
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Figure 7. A RL / RP plot showing the GPD fit (centre solid
black line) and a comparison of 95% confidence intervals using
the methods outlined in Section 4.3. The index shown here is the
Sw3q90, WS10 using all grid-points. Horizontal axis: RP (years),
vertical axis: RL (NDU). Different estimations of confidence intervals:
profile log-likelihood (solid black), parametric resampling (dashed
black) and the delta method (dot dashed black). Note the log scale

on the horizontal axis.
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NDU or lower (the lines for the lower confidence bound
level off around this value). This is in contradiction with
the actual dataset, which comprizes events with index
values larger than 88 NDU. Obviously the upper bound of
the distribution is necessarily larger than the largest data
value. This is not reflected in the confidence intervals
of the delta method and the resampling. Both these
methods do not take explicitly into account the highest
data values in the sample. In contrast, the confidence
bounds calculated from the likelihood profile reveals an
uncertainty range for the RLs which is shifted to larger
values and is consistent with the data at large RPs. Some
more general comparisons show that the likelihood profile
method differs from the two other methods particularly
in cases with a short (bounded) tail. Consideration of the
true likelihood surface in the profile method makes more
direct use of the data sample in estimating the sampling
uncertainty and this avoids inconsistencies of confidence
intervals with the actual sample.

Short tail behaviour was observed with most of the
EWI considered in this paper. We therefore chose the
likelihood profile method for estimating the sampling
uncertainty of RPs (and distribution parameters). A slight
modification was however applied for RPs near the
threshold (typically for periods smaller than 0.2 years).
For these cases, the likelihood profile was replaced by
the uncertainty in the mean exceedence based on the
underlying Poisson process.

5. Results

The Results Section is divided into three subsections.
Firstly, the distributed (grid-point) and generalized (EWI)
storm climatologies are presented in order to identify
their similarities and differences. The second subsection
is devoted to comparing the RPs of wind storms derived
from the two different approaches answering research
questions numbers two and three (Section 1). The final
subsection is aimed at answering research question four
on the representativity of the generalized storm RPs for
estimating the grid-point storm RPs.

5.1. Distributed and generalized storm climatologies

We fitted a GPD distribution to each of the 10 857
grid-points over the domain to form an extreme wind
climatology to be representative of the local extreme
wind climatology. As described in Section 4.2 we used
the same fixed threshold (95% quantile) in the grid-
point GPD model as the EWI (95% quantile), based on
the extensive diagnostic checks performed for individual
grid-points. Generally, the GPD fits to POT series at
individual grid-points, (assessed using qq-plots) is very
good (not shown). We quantified this more rigorously
using an Anderson-Darling (A2) goodness-of-fit test
(Choulakian and Stephens, 2001) and find that 74% of the
fitted GPDs passed this test at the 5% significance level.

Figure 8 provides a summary of the important param-
eters of the EVA at each grid-point. Figure 8(a) shows

the empirically based seasonal 95% quantile threshold
(u) of WS10. Generally, there are higher winds over the
North Atlantic Ocean and the British Isles than over the
north, east and south of the domain. The average number
of extreme wind events per season, λ shows a band of
lower values running from the southwest of the domain to
the northeast of the domain, whereas in the northwest, the
southeast as well as the far northeast there are higher val-
ues of λ (Figure 8(b)) corresponding to the major storm
track and genesis areas of the Northeast Atlantic and the
Mediterranean regions respectively. Values of λ range
from approximately 6 to 25. The spatial distribution of
σ , the scale parameter of the GPD (Equation 1), resem-
bles the distribution of u, i.e. a wider GPD distribution
over ocean areas compared to land areas (see Monahan,
2004, for a physical explanation). The shape parameter
ξ is rather mixed and shows little spatial coherency. In
some cases, individual grid-points have a slightly posi-
tive shape parameter indicating that the GPD has no upper
limit. The extremal index θ (Section 4.1), a measure of
the tendency for storms to cluster in time, is almost identi-
cal in appearance to the spatial distribution of λ. θ shows
a wide area of the domain east of the main North Atlantic
storm track where θ is lower than around 0.3 indicating
that extreme wind events tend to form larger clusters that
are separated by more time in this region compared to the
western North Atlantic, south of the Alps and the eastern
Mediterranean, in part confirming the storms clustering
analysis of Mailier et al. (2006) for cyclone count-based
statistics. This process is evident in Figure 3 which shows
the de-clustered POT series for two points, one where
there is clearly more clustering (Figure 3(a), higher λ and
lower θ ) and the other where there is less clustering of
extreme winds (Figure 3(b), lower λ and higher θ ). The
RL for various RPs are shown in Figure 9. Note that the
purpose of this figure is to compare the relative differ-
ences in the RLs for various RPs and not as a measure
of the absolute magnitude of surface wind speeds. For
each of the RPs a similar spatial structure of the extreme
winds can be seen, with higher values in the far west
of the domain and over ocean regions than over land.
Relatively high values can be seen over the British Isles
and the north coast of Spain as well as the western and
northern coasts of western Europe with relatively lower
values over Scandinavia, eastern and southern Europe.

The generalized wind-storm climatology is presented
as a RL/RP plot in Figures 10 and 11. The RL/RP
plot summarizes the fitted GPD (i.e. the extreme wind
climatology) together with the estimates of the RP and
RL of each of the catalogue wind storms which are above
the chosen threshold. Using the Sw3q90 index calculated
from WS10 over the whole domain we estimate a
wide range of RPs (Figure 10, vertical grey lines) for
the catalogue storms between approximately 0.2 and
18 years. These estimates are based on the GPD fit
(black line) and not the cluster maxima (black dots).
The curvature of the GPD fit is negative, indicating that
the shape parameter is negative (ξ , Equation 2) and that
there is a physical upper limit to the extreme process.
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Figure 8. Parameters of the grid-point EVA (Section 4) for WS10. (a) The grid-point empirical 95% quantile threshold, u (ms−1) and the MLEs
of the GPD fit (Equations 1 and 2) , (b) the average number of extreme wind events per season after de-clustering, λ, (c) the scale parameter
of the GPD, σ , (d) the shape parameter of the GPD, ξ , and the extremal index, θ (Section 4.1) (e). This figure is available in colour online at

www.interscience.wiley.com/ijoc

This is in agreement with distributed storm climatology
(see Figure 8(d)). Figure 11 shows the generalized storm
climatologies of all five indices calculated using land-
only grid-points. The climatologies all exhibit a negative
shape parameter in the range −0.23 ≤ ξ ≤ −0.10 and
each have a similar number of storm occurrences per
season, λ in the range of 8.2 ≤ λ ≤ 11.0. The scale
parameter varies greatly due to the different units of each
EWI. The quality of the GPD fit to each of the EWI was
assessed using qq-plots (e.g. Figure 4) and the Anderson-
Darling (A2) test. The quality of the fit assessed using this
statistic was noticeably the best for the index Sw3q90 and
the worst for the index Q95. Comparing Figure 11 with
Figure 10 it is noticeable that there is a greater range of
RP estimates for the catalogue storms. This reflects that
the sampling of wind storms in the catalogue is biased
towards wind storms which had an impact on the western

European region. With this in mind, and returning to
Figure 10, we see that there are a number of storms in
the EWI (black dots) that do not coincide with the seven
most extreme catalogue storms (grey lines). A sign that
more intense wind storms have occurred in the northeast
North Atlantic than documented in the storm catalogue.

5.2. Distributed and generalized return periods
for prominent European wind storms

In this section, we present a comparison of the RPs of
catalogue wind storms using the generalized and dis-
tributed wind storm climatologies highlighting the major
sources of uncertainty. We start with an intercompari-
son of the EWIs using either WS10 or FG10. Figure 12
presents scatter-plots of the catalogue storm RPs esti-
mated using FG10 versus the RPs using WS10 for each
index for the land-only domain. On each plot there are
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Figure 9. The RL (ms−1) of WS10 at each grid-point for RPs of 1 year (a), 5 years (b), 20 years (c), and 50 years (d). Note that
the actual RL magnitude is not representative of absolute (in-situ) wind speed at the surface. This figure is available in colour online at

www.interscience.wiley.com/ijoc

Figure 10. The RP (years) and RL (NDU) of the GPD fit (black line,
Equation 2) of the EWI Sw3q90, using (WS10) over the whole domain.
The black dots represent the maxima of the de-clustered POT series.
Dashed dotted lines show the upper and lower bounds of the 95%
confidence interval. The horizontal and vertical grey lines denote the
RL and RP of the catalogue storms, respectively. The dashed grey
line denotes the 95th percentile threshold above which the de-clustered

peaks were chosen. Note the log scale on the horizontal axis.

200 points (representing the number of storms in the
storm catalogue) together with the 95% confidence inter-
val of each RP (based on the EVA). Generally, there are
fair relationships between the RPs of the catalogue storms
calculated using the extreme indices and FG10 and WS10
(indicated by the Spearman rank and Kendall Tau non-
parametric correlation coefficients at the bottom of each

sub-plot). In some cases the RP of each storm is not
explained by the uncertainty of the EVA, as indicated by
the lack of overlap between the error bars and the diago-
nal one-to-one line. For example, in Figure 12(a) there is
a storm which has a RP of approximately 40 years using
X and WS10, whereas the same storm using X and FG10
is only estimated to be a 2-year RP event. In some cases,
the RPs are higher when calculated from WS10 over land
compared to using FG10 over land (cf Figure 12(c), d
and e). This may be explained by the reduction in the
number of grid-points used to calculate the EWIs due to
the applied mask. Upon further investigation it was found
(not shown) that masking the WS10 as if they were FG10
improved the correlation coefficients for the EWIs, X,
Sf q95 and Sf q95q99 but not for the EWIs Q95 and
Sw3q90. For example, in Figure 12(d) and (e) the low
RP storms using FG10 are not visible when WS10 is
masked. This result is reasonable given that the Sf q95
and Sf q95q99 indices are sensitive to local grid-point
percentiles. When the majority of the wind storm ’foot
print’ is located over grid-points which are masked, then
the resulting RP estimates are lower. Other differences
in the RP estimates stem from more fundamental differ-
ences in the datasets than the result of masking. It is also
evident that some storms have the lowest RP possible
(approximately 0.1 years). Any storm which is not above
the fixed POT threshold is given the same RP of λ−1 as
explained in Section 4.3.
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Figure 11. As for Figure 10, but the RP (years) and RL of the GPD fit (black line, Eqn. 2) of the EWI (a) X, (b) Q95, (c) Sw3q90, (d) Sf q95,
and (e) Sf q95q99 using WS10 over the land domain.

An intercomparison of catalogue storm RPs from
different EWIs shows that with some EWI, data and
mask combinations result in very similar RP estimates (in
terms of rank correlations, not shown), while others are
very different from one another. Inter-index comparisons
indicate that X, Sf q95 and Sf q95q99 are most highly
correlated with each other for both datasets (FG10 and
WS10) and for all masks. Whereas, correlations between
RPs of Sw3q90 and X or Sf q95 or Sf q95q99 are
lowest contrasting the differences in the sensitivities
of these indices. Inter-dataset indices all show similar
correlations (cf Figure 12). Note that the range of inter-
index correlations (0.49 < Spearman rank correlations <

0.94) is larger than the range of inter-dataset correlations
(0.84 < Spearman rank correlations < 0.89), indicating

that greater differences between RP estimates are due
to the EWIs rather than the datasets. Some plausible
explanation for these differences are presented later in
Section 5.3 and is related to the sensitivity of the EWIs
to the domain and storm catalogue.

Figure B-1 presents an overview of RPs of promi-
nent wind storms from the storm catalogue calculated
using WS10 (a) and FG10 (b). It has been placed in
Appendix B since we envisage that it could be used as a
reference for readers who wish to see individual storm RP
estimates (which are not possible to derive from previous
figures). For each storm above the threshold, the name
(when known) and date, as well as the 95% confidence
interval of the storm RP is shown using the EWI Sw3q90
(other EWIs are available upon request). The number of
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Figure 12. Comparison of RP (years) over land for the 200 catalogue wind storms calculated using FG10 and WS10 for each of the five EWI, (a)
X, (b) Q95, (c) Sw3q90, (d) Sf q95, and (e) Sf q95q99. Note the logarithmic scale. 95% confidence intervals for each of the RPs are denoted
by the vertical (FG10) and horizontal (WS10) whiskers on each point. At the bottom of each sub-figure is the Spearman rank and Kendall Tau

correlation coefficient.

catalogue storms above the 95th percentile threshold of
the index Sw3q90 is 158 and 161 storms respectively.
However, only the common storms above each threshold
respectivley are shown for comparison purposes (153).
Generally, the range of RP estimates is similar using
either FG10 or WS10, and the RPs of individual storms
are quite consistent with one another. In summary, the
EWIs summarize the extreme wind climatology over a
domain and offer a single estimate of the extreme wind
RP of a storm which may be intuitively appealing for

applications, such as in the reinsurance industry where a
single estimate of the intensity of an event is needed to
explain an aggregated loss over a portfolio. The EWIs are
a spatial summary statistic, and hence, the RPs estimates
are representative of the RP of a storm, that could have
occurred anywhere over the chosen domain.

Similarly as for the EWIs, we investigated the effect of
using different data to estimate the RP of the catalogue
storms at the grid-point level (distributed view). We
found that achieving a consistent estimate of RP for each
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of the catalogue storms at individual grid-points is as
difficult as when using different EWIs and datasets. A
possible reason for the lack of correspondence between
these estimates is due to fundamental differences in FG10
and WS10. Figure 13 presents the spatial distribution of
RPs of FG10 and WS10 associated with selected storms
in the 1989/1990 and 1999/2000 seasons. Qualitatively
the fields in Figure 13 are similar, but however, on a
regional and grid-point level the differences are greater,
especially for the storm Lothar (Figure 13(e) and (f)).
Lothar was a very fast moving mesoscale cyclone and its
RP estimates are aliased due to the sampling frequency of
WS10 shown as ‘islands’ of higher RP winds. Recall that
the 6-hourly values of FG10 represent the maximum wind
gust during a 6-h period, whereas the 6-hourly values

of WS10 are the instantaneous analysis values. Another
point to keep in mind when interpreting this figure is that
the individual grid-point RPs are not the instantaneous
RPs at the date and time of the storm, but the maximum
RP calculated using the 72-h maximum FG10 and WS10
centred on the storm date/time. This was done in order to
ensure that we capture the RP of the storm and not just
the RP at the time of analysis. The RP patterns for Vivian
(Figure 13(a) and (b)) are qualitatively similar, however,
the area of maximum grid-point RPs using FG10 is larger
than with the corresponding WS10 analysis. Possible
reasons for these discrepancies could be storm-specific
dynamics (Wernli et al., 2002; Holton, 2004) which pro-
duced stronger gust speeds (and hence higher RPs) than
are usually associated with the corresponding WS10, or

Figure 13. The RP (years) for each grid-point for the selected catalogue storms in the 1989/1990 and 1999/2000 October–April extended winter
seasons estimated from FG10 and WS10, (a) Vivian: 26 Feb 1990 1200UTC, using FG10, and (b) using WS10, (c) Anatol: 3 Dec 1999 1200UTC
using FG10, and (d) using WS10, (e) Lothar: 26 Dec 1999 0000UTC using FG10, and (f) using WS10. The RP scale is in the top right of the
plot. Note that grey areas in (a), (c) and (e) denote masked values. This figure is available in colour online at www.interscience.wiley.com/ijoc
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remaining problems in the ERA-40 gust parameteriza-
tion scheme. Storm-specific dynamics are likely to be
the reason for this discrepancy since an investigation of
the PartnerRe high-resolution wind gust field reveals (not
shown) a qualitatively similar pattern to the RPs shown
in Figure 13(a). In the other example shown, the storm
Anatol has a very similar structure and magnitude of
RPs (Figure 13(c) and (d)) using either FG10 or WS10.
Another limitation of using WS10 (Figure 13(b) and (f))
is the lack of high RPs over the Alps. This could be due
to the climatologically low wind speeds (see Figure 8(a)
and Figure 9) at 10 m perhaps caused by problems in
the parameterization of wind speed in areas of complex
orography. It is clear from other examples (not shown)
that the estimation of RPs of storms that are less than 72
h apart from each other are either very similar or very
disparate (e.g. Lothar and Martin, separated by approxi-
mately 48 h) due to the criteria of taking the maximum
grid-point wind RP over a 72-h period.

A qualitative comparison of RPs calculated from the
generalized EWIs and the distributed grid-point approach
demonstrates their utility in estimating the RPs of cat-
alogue storms during the 1989/1990 and 1999/2000
extended winter seasons. Tables 1 and 2 summarize the
RPs calculated using Sw3q90 and WS10 or FG10 over
land and the range of grid-point RPs over land, respec-
tively. The most severe wind storm in these two seasons
(according to this index and dataset, Table 1), is associ-
ated with the storm Daria, with an RP estimated to be
24.1 years (see also Figure 14(b)). Its corresponding RP
estimates using the same index, but FG10, is approxi-
mately 39 years (Table 2), and although these estimates
differ they are well contained within each of the uncer-
tainty estimates. In the grid-point analysis the same storm
has produced local winds over land to be between 0.1 and
200+ years (see Figure 14(b)) with some of the individ-
ual grid-point RPs as high as 1500 years in the English
Channel area, where the storm had its highest intensity.
By comparing the value of the third quartile of grid-point
RPs with the Sw3q90 RPs for all storms and both datasets
(Tables 1 and 2), we can say that the EWI RP and the
grid-point RPs are in qualitative rank-order agreement
for most storms. The major exception to this rule is for
the storm Vivian, where the EWI RP estimates differ
greatly between datasets (13.1 years using WS10, and 374
years using FG10) but do not differ greatly comparing the
third quartile of grid-point RPs (10.6 years usingWS10
and 9.4 years using FG10). However, this result is not
unreasonable given the large uncertainty in the EWI RP
estimates and individual differences in storm dynamics
represented by FG10 and WS10 as stated above. It is
interesting to note that when using Sf q95 the six least
frequent storms are all unnamed storms and different to
those derived from Sw3q90 contrasting the differences
between these indices. If we look in more detail to the
storms Lothar and Martin we can see that the RP esti-
mates differ substantially between datasets due to both
the mask applied to FG10 and the aliasing of the sig-
nal due to WS10. While the grid-point RP analysis also

Figure 14. As for Figure 13 but the RP (years) of WS10 for each
grid-point estimated for the storm Daria: 26 Jan 1990 0000UTC (b). In
(a) and (c) are shown the upper (lower) bound of the 95% confidence
interval of the RP (years). This figure is available in colour online at

www.interscience.wiley.com/ijoc

exhibits dependence on the dataset at the grid-point level,
qualitatively the pattern and magnitude of the RPs are
similar (see Figure 13(a)–(d)). The RPs for storm Lothar
over Switzerland (Figure 13(e) and (f)) are hard to com-
pare with Albisser et al. (2001) due to the masking and
aliasing effects of the ERA-40 data used here.

5.3. Representativity of continental RPs

A basic evaluation of the ability of the EWI RP esti-
mates to represent the grid-point wind-based RP esti-
mates for the 200 wind storms has been performed using
a Spearman rank (and Kendall Tau) correlation analy-
sis. Figure 15 demonstrates that the rank of the RPs of
Sw3q90 are most highly correlated with the rank of the
RPs from the grid-point analysis over a region centred
in the mid-western part of the domain over the North
Atlantic Ocean (Figure 15(a)) with r values in the order
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Figure 15. The Spearman rank correlation between the RPs of the 200 catalogue storms based on Sw3q90 of WS10 and the RP at each grid-point
based on WS10, (a) using all grid-points, and (b) land grid-points only.

of 0.4–0.6. The rank correlation decreases radially from
this point such that r over the European coast and further
inland is between 0 and 0.3 implying that these indices
only share a small fraction of variability of the local
grid-point RPs. Results are better if we consider EWI
using land grid-points (Figure 15(b)). Here, again we see
a ’bullseye’ centred on western central Europe. Within
these regions, r ranges from 0 to 0.7 indicating that a rea-
sonable amount of shared variability exists between grid-
point RPs and the EWI RPs. For the other indices (except
Q95) it is important to note that the centre of highest r

over the land-only domain is located further east (east
of Germany, not shown). This may explain why Sw3q90
and Q95 have a higher number of catalogue storms above
the 95% quantile threshold (161 and 152, respectively)
than the other EWI (145, 137 and 143 for X, Sf q95 and
Sf q95q99, respectively) since the region of highest sen-
sitivity of the index also coincides with the region over
which most of the catalogue storms have been selected.

6. Conclusions and discussion

We use state-of-the-art reanalysis data combined with
extreme value analysis techniques to estimate the clima-
tology of extreme winds and the recurrence frequency
of prominent wind storm events over Europe during the
period from 1957 to 2002. If we return to the original
aims of the study which are reiterated below, we conclude
the following from this analysis:

How reliable are wind parameters in the ERA-40
reanalysis (spatial representativity, temporal homogene-
ity) for estimating RPs of high-impact storm events over
Europe?

• FG10 from ERA-40 should not be used in areas where
the roughness length parameter is high (>3m), due
to the boundary-layer physics in the ERA-40 model.
Such areas should be masked from the analysis (cf
Figure 1).WS10 from ERA-40 appears to be free from
the problems associated with high wind gust values,
however, 10-m winds over complex orography might
to be too low (cf Figure 8(a) and Figure 9).

• WS10 (and any other analysed wind-speed parameters)
represents the instantaneous wind speed at the reanal-
ysis output time which results in aliasing of the wind
speed and hence contributes to the unreliability of RPs
in both the generalized and distributed approaches to
RP estimation. FG10 represents the maximum wind
gust during the previous 6 h and does not suffer from
this problem.

• Both the generalized and distributed extreme wind
climatologies demonstrate the expected land–sea con-
trasts and a negative shape parameter of the GPD.

• The distributed wind storm climatology shows an
increased storm frequency and decreased storm clus-
tering in the Northeast Atlantic associated with the
storm track, and the Mediterranean region of secondary
cyclogenesis confirming the results of Mailier et al.
(2006) (cf Figure 8(e)).

How sensitive are estimates of RPs to the details in the
definition of the EWIs?

• The EWIs X, Sf q95 and Sf q95q99 result in similar
RP estimates for individual storms. These indices
should be used when more weight to local winds
relative to their climatology is needed, and to find
storms also affecting regions not subject to regular
extreme wind events.

• The EWIs Sw3q90 and Q95 result in similar RP
estimates for individual storms. These indices should
be used when more weight to the absolute magnitude
of a wind storm is needed, regardless of the local wind
climatology.

• The RPs estimates from Sw3q90 and Q95 are more
representative of loss figures published in MunichRe
(2000) than the remaining EWIs. We note that the
quality of the GPD fit to Q95 shown in Figure 11(b)
is lower than other indices.

• EWI storm RPs are most sensitive to the domain
over which they are calculated, and to a lesser extent,
the definition of the index. Higher RPs result from
using land-only grid-points than from using the whole
domain. This is partly due to the storm catalogue being
biased towards wind storms which had an impact on
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continental Europe, especially in the northwest, and
due to the process of spatial averaging.

What is the degree of uncertainty in estimating
continental-scale and grid-point-scale RPs for past
storms? Which factors contribute most to the uncertainty?

• The largest uncertainties in RP estimates (both the
generalized and distributed approaches) derive from
the differences in the wind gust and wind-speed data
(such as masking and aliasing, mentioned above)
generally for RPs less than 10 years. This uncertainty
tends to be comparable with the uncertainty associated
with the GPD fit at higher RPs (cf Figure 12, Tables 1
and 2).

• The RPs calculated using either Sw3q90 or Q95
compared with either X, Sf q95 or Sf q95q99 shows
that the EWI definition plays a greater role in the RP
differences than the wind parameter chosen.

• The spatial distribution of RPs for catalogue storms is
generally similar using either WS10 or FG10. Physical
processes leading to extremes specific to individual
storms may not be adequately captured by WS10 and
hence the calculation of RPs.

• The method of taking the maximum RP within a 72-h
period prevents an accurate RP estimate for catalogue
storms which occurred less than 72 h apart from one
another. This aspect of the data processing prevents
the estimates of RPs from storms such as Lothar
and Martin from being independent. This method also
potentially biases RPs to the time when the storm has
its maximum intensity, and not necessarily at its peak
impact.

• In some cases, the catalogue storm dates/times do not
match the cluster maxima of the EWI or the grid-point
wind exactly. This could be due to the fact that the
catalogue storm dates were recorded when the storm
had the highest impacts, and not necessarily when the
storm had its highest intensity.

How representative are continental-scale estimates of
RPs as a measure of the local recurrence of a storm?

• The generalized and distributed RP estimates share
up to approximately 50% of common variations. The
larger the domain considered the lower the effective-
ness of the EWI at explaining local wind RPs. The
Sw3q90 and Q95 indices have the highest correla-
tions with local RP estimates due to these indices
being based on an absolute wind-speed magnitude.
Best correlations coincide with regions of climatologi-
cally highest magnitude winds (over land, cf Figure 9).
The success of these indices is also partly due to
the way in which the storm catalogue was created.
The storm catalogue is biased towards storms which
occurred in the region of interest of the source docu-
ments, which in this case, is mainly focused on north-
western Europe.

We can also state various conclusions associated with
the chosen EVA methodologies: The generalized Pareto
distribution is a robust extreme-value model of the de-
clustered peak over threshold (POT) series obtained
from EWI and grid-point wind speed. The POT series
was obtained using an automatic de-clustering method
which largely avoided the need for the specification of
arbitrary parameters as is the case with more common
de-clustering methods. To determine the uncertainty of
the extreme wind climatology and catalogue storm RPs,
the profile log-likelihood method is used as it gives
more physically meaningful results than other common
methods. The choice of de-clustering method (either the
Ferro and Segers (2003) or runs-de-clustering (Coles,
2001), not shown, see Della-Marta et al., 2007), has little
effect on RPs of catalogue storms calculated using EWIs,
however, the quality of the GPD fit can be affected
depending on whether the seasonal cycle of the index
is included in the de-clustering.

The question of determining the RP of a ’wind
storm’ is rather ill-posed since a wind storm has many
degrees of freedom which are difficult to summarize in
a generalized or a distributed approach. The EWIs are
a spatial summary statistic, and hence, the estimates of
RPs are more representative of the RP of a storm that
could have occurred anywhere over the chosen domain.
We conclude that it is very difficult to obtain a spatial
summary statistic (EWI) which works equally well for
each type of storm event in the context of trying to
estimate a storm RP, although Sw3q90 seems to have
higher representativity of the given catalogue storms than
the other indices. On the other hand, the grid-point wind
speed RPs also show dependency between datasets, and
may not be used to estimate the RP of the storm given that
no spatial dependence between grid-point RPs is taken
into account.

We did not include any treatment of non-stationarity in
our GPD model since there is little evidence of any long-
term linear trends in storminess over Europe during the
past 100 years (e.g. Alexandersson et al., 2000) however,
there remains decadal variability in the dataset (e.g. the
more frequent and higher-intensity storms in the 1990s)
which does affect the interpretation of RPs such as those
listed in Tables 1 and 2. For example, both Daria and
Vivian, two high-RP storms, occurred during the same
season. Further analysis of the trends in the DPOT series
of each EWI show (not shown) an increase (significant at
0.05 level) over land areas using Sw3q90, whereas, no
other index indicates a trend during this period.

As more accurate and longer datasets of either in-
situ wind data, pressure datasets or dynamically down-
scaled reanalyses become available (Diaz et al., 2002;
Alexander et al., 2005; Ansell et al., 2006; Heneka et al.,
2006; Schwierz et al., 2008) this analysis should be
repeated in order to minimize the uncertainty in the
RP calculations. We also recommend further research
into the spatial structure of historical wind storm events
through the application of advanced spatial EVA tech-
niques (Coles, 2001). Given the lack of longer and more
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reliable reanalysis or in-situ data, utilization of the ever-
increasing amount of dynamical ensemble prediction data
(van den Brink et al., 2004a,b; Jung et al., 2005; Frei
et al., 2006) is suggested as a means to build more real-
istic estimates of the frequency of wind storms.

In conclusion, the results demonstrate that significant
progress has been made through the development of an
extreme wind climatology based on a robust reanalysis
dataset consistent in space and time. We have created a
climatology of wind storm RPs based on EWIs together
with estimates of their local wind RP using the grid-point
approach. Considerable challenges remain both from the
methodological treatment of spatial extreme events and
from the limitations imposed by the currently available
datasets.
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Appendix A

This appendix describes each of the Extreme Wind
Indices (EWI) in mathematical notation for the benefit
of readers who may wish to implement such indices.
The indices are denoted in terms of a generic wind
variable, W and could be substituted for either FG10 or
WS10. Where possible, we tried to take into account the
unequal areas of each grid box by weighting sums and
multipliers by the cosine of the latitude of each grid-point.
A rationale for each index is given in Section 3.

X: Mean wind (units of ms−1).

X (t) = 1

Nκδ

∑
x,y∈δκ(x, y)w(x, y, t) (A1)

where κ are the individual grid-point weights which
only depend on y, κ (x, y) = cos (latitude (y)), Nκδ =∑

x,y∈δ κ (x, y) and δ denotes the domain.

Q95: The spatial 95% quantile wind (units of ms−1).

Q95(t) = F −1
∗ (p) = min{w : p ≤ F∗(W)} (A2)

where p = 0.95 and F∗ is the latitude weighted empir-
ical cumulative distribution function of {w(x, y, t) :
(x, y) ∈ δ} where δ denotes the domain. The weighted
cumulative distribution function is given by Horvitz and
Thompson, 1952; R Development Core Team, 2005).

F∗ (W) = 1

Nκδ

∑
x,y∈δκ(x, y) (w(x, y, t) ≤ W) (A3)

Where κ are the individual grid-point weights and Nκδ is

given above and =
{

1 : w(x, y, t) ≤ W

0 : otherwise
.

Sw3q90: Cube root of the sum of wind cubed
above the domain climatological 90% quantile (non-
dimensional).

Sw3q90(t) = 3

√√√√√√
∑

x,y∈δ(
{
>q90

}(w(x, y, t) > q90)

·κ(x, y)
(
w(x, y, t) − q90)

)3

(A4)

where κ are the weights given above, the {
>q90

} ={
1 : w (x, y, t) > q90
0 : otherwise

. The domain mean quantile func-

tion q90 is given by:

1

Nδ

∑
x,y∈δ

q90(x, y) (A5)

where q90(x, y) = F −1(p) = min {w : p ≤ F(W)}, p =
0.90, F is the empirical cumulative distribution function
of {w (x, y, t) : t ∈ ONDJFMA}

Sf q95: Sum of the fraction of wind divided
by the grid-point climatological 95% quantile (non-
dimensional).

Sf q95(t) =
∑
x,y∈δ

{>1}
(

w(x, y, t)

q95(x, y)

)
· κ(x, y)

w(x, y, t)

q95(x, y)

(A6)

where κ are the weights given above, the {>1} ={
1 :

(
w(x,y,t)

q95(x,y)

)
> 1

0 : otherwise
. The grid-point quantile function

q95 is given by:

q95(x, y) = F −1(p) = min {w : p ≤ F(W)} (A7)

where p = 0.95, F is the empirical cumulative distribu-
tion function of {w (x, y, t) : t ∈ ONDJFMA}
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Sf q95q99: Sum of the fraction of extreme wind
divided by the length of the distribution tail (non-
dimensional).

Sf q95q99(t) =
∑
x,y∈δ

{>0}
(

w(x, y, t) − q95(x, y)

q99(x, y) − q95(x, y)

)

· κ(x, y)
w(x, y, t) − q95(x, y)

q99(x, y) − q95(x, y)
(A8)

where κ are the weights given above, the {>0} ={
1 :

(
w(x,y,t)−q95(x,y)

q99(x,y)−q95(x,y)

)
> 0

0 : otherwise
. The grid-point quantile

functions, q95 and q99 are given above.

Appendix B

In this appendix, we present two figures which show
the RP of many well known European winter wind
storms that occurred during the ERA-40 reanalysis period
(1957–2002). A list of prominent winter wind storms was
compiled from various available sources, and is detailed
in Section 2.1.
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Schwierz C, Köllner-Heck P, Zenklusen E, Bresch DN, Vidale PMW,
Schär C. 2008. Modelling European winter wind storm losses in
current and future climate. Climatic Change: 1–35, Submitted.

Seierstad IA, Stephenson DB, Kvamsto NG. 2007. How useful are
teleconnection patterns for explaining variability in extratropical

Copyright  2008 Royal Meteorological Society Int. J. Climatol. (2008)
DOI: 10.1002/joc



THE RETURN PERIOD OF WIND STORMS OVER EUROPE

storminess? Tellus Series A-Dynamic Meteorology and Oceanogra-
phy 59(2): 170–181.

Smits A, Tank AMGK, Konnen GP. 2005. Trends in storminess over
the Netherlands, 1962–2002. International Journal of Climatology
25(10): 1331–1344.

Sterl A. 2004. On the (in)homogeneity of reanalysis products. Journal
of Climate 17(19): 3866–3873.

SwissRe. 2000. Storm Over Europe – An Underestimated Risk. Swiss
Reinsurance Company: Zürich.
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